scholarly journals USP13 antagonizes gp78 to maintain functionality of a chaperone in ER-associated degradation

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Yanfen Liu ◽  
Nia Soetandyo ◽  
Jin-gu Lee ◽  
Liping Liu ◽  
Yue Xu ◽  
...  

Physiological adaptation to proteotoxic stress in the endoplasmic reticulum (ER) requires retrotranslocation of misfolded proteins into the cytoplasm for ubiquitination and elimination by ER-associated degradation (ERAD). A surprising paradox emerging from recent studies is that ubiquitin ligases (E3s) and deubiquitinases (DUBs), enzymes with opposing activities, can both promote ERAD. Here we demonstrate that the ERAD E3 gp78 can ubiquitinate not only ERAD substrates, but also the machinery protein Ubl4A, a key component of the Bag6 chaperone complex. Remarkably, instead of targeting Ubl4A for degradation, polyubiquitination is associated with irreversible proteolytic processing and inactivation of Bag6. Importantly, we identify USP13 as a gp78-associated DUB that eliminates ubiquitin conjugates from Ubl4A to maintain the functionality of Bag6. Our study reveals an unexpected paradigm in which a DUB prevents undesired ubiquitination to sharpen substrate specificity for an associated ubiquitin ligase partner and to promote ER quality control.

2016 ◽  
Vol 213 (6) ◽  
pp. 693-704 ◽  
Author(s):  
Natalia Sikorska ◽  
Leticia Lemus ◽  
Auxiliadora Aguilera-Romero ◽  
Javier Manzano-Lopez ◽  
Howard Riezman ◽  
...  

Endoplasmic reticulum (ER) quality control mechanisms target terminally misfolded proteins for ER-associated degradation (ERAD). Misfolded glycophosphatidylinositol-anchored proteins (GPI-APs) are, however, generally poor ERAD substrates and are targeted mainly to the vacuole/lysosome for degradation, leading to predictions that a GPI anchor sterically obstructs ERAD. Here we analyzed the degradation of the misfolded GPI-AP Gas1* in yeast. We could efficiently route Gas1* to Hrd1-dependent ERAD and provide evidence that it contains a GPI anchor, ruling out that a GPI anchor obstructs ERAD. Instead, we show that the normally decreased susceptibility of Gas1* to ERAD is caused by canonical remodeling of its GPI anchor, which occurs in all GPI-APs and provides a protein-independent ER export signal. Thus, GPI anchor remodeling is independent of protein folding and leads to efficient ER export of even misfolded species. Our data imply that ER quality control is limited for the entire class of GPI-APs, many of them being clinically relevant.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Madlen Stephani ◽  
Lorenzo Picchianti ◽  
Alexander Gajic ◽  
Rebecca Beveridge ◽  
Emilio Skarwan ◽  
...  

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the endoplasmic reticulum (ER). Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control in the ER.


2015 ◽  
Vol 26 (24) ◽  
pp. 4438-4450 ◽  
Author(s):  
Ting Zhang ◽  
Yue Xu ◽  
Yanfen Liu ◽  
Yihong Ye

Eukaryotic cells eliminate misfolded proteins from the endoplasmic reticulum (ER) via a conserved process termed ER-associated degradation (ERAD). Central regulators of the ERAD system are membrane-bound ubiquitin ligases, which are thought to channel misfolded proteins through the ER membrane during retrotranslocation. Hrd1 and gp78 are mammalian ubiquitin ligases homologous to Hrd1p, an ubiquitin ligase essential for ERAD in Saccharomyces cerevisiae. However, the functional relevance of these proteins to Hrd1p is unclear. In this paper, we characterize the gp78-containing ubiquitin ligase complex and define its functional interplay with Hrd1 using biochemical and recently developed CRISPR-based genetic tools. Our data show that transient inactivation of the gp78 complex by short hairpin RNA–mediated gene silencing causes significant stabilization of both luminal and membrane ERAD substrates, but unlike Hrd1, which plays an essential role in retrotranslocation and ubiquitination of these ERAD substrates, knockdown of gp78 does not affect either of these processes. Instead, gp78 appears to act downstream of Hrd1 to promote ERAD via cooperation with the BAG6 chaperone complex. We conclude that the Hrd1 complex forms an essential retrotranslocation module that is evolutionarily conserved, but the mammalian ERAD system uses additional ubiquitin ligases to assist Hrd1 during retrotranslocation.


2009 ◽  
Vol 20 (18) ◽  
pp. 4059-4069 ◽  
Author(s):  
Diane E. Grove ◽  
Meredith F.N. Rosser ◽  
Hong Yu Ren ◽  
Anjaparavanda P. Naren ◽  
Douglas M. Cyr

Premature degradation of CFTRΔF508 causes cystic fibrosis (CF). CFTRΔF508 folding defects are conditional and folding correctors are being developed as CF therapeutics. How the cellular environment impacts CFTRΔF508 folding efficiency and the identity of CFTRΔF508's correctable folding defects is unclear. We report that inactivation of the RMA1 or CHIP ubiquitin ligase permits a pool of CFTRΔF508 to escape the endoplasmic reticulum. Combined RMA1 or CHIP inactivation and Corr-4a treatment enhanced CFTRΔF508 folding to 3–7-fold greater levels than those elicited by Corr-4a. Some, but not all, folding defects in CFTRΔF508 are correctable. CHIP and RMA1 recognize different regions of CFTR and a large pool of nascent CFTRΔF508 is ubiquitinated by RMA1 before Corr-4a action. RMA1 recognizes defects in CFTRΔF508 related to misassembly of a complex that contains MSD1, NBD1, and the R-domain. Corr-4a acts on CFTRΔF508 after MSD2 synthesis and was ineffective at rescue of ΔF508 dependent folding defects in amino-terminal regions. In contrast, misfolding caused by the rare CF-causing mutation V232D in MSD1 was highly correctable by Corr-4a. Overall, correction of folding defects recognized by RMA1 and/or global modulation of ER quality control has the potential to increase CFTRΔF508 folding and provide a therapeutic approach for CF.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Yingying Zhao ◽  
Jason A MacGurn ◽  
Max Liu ◽  
Scott Emr

Secretory cargo that cannot fold properly in the ER are selectively targeted for removal by a well-studied ER-associated degradation pathway, or ERAD. In contrast, very little is known about post-ER quality control mechanisms for damaged or misfolded integral membrane proteins. Here we describe a quality control function of the Rsp5-ART ubiquitin ligase adaptor network that functions to protect plasma membrane (PM) integrity. Failure to mediate this protective response during heat stress leads to toxic accumulation of misfolded integral membrane proteins at the cell surface, which causes loss of PM integrity and cell death. Thus, the Rsp5-ART network comprises a PM quality control system that works together with sequential quality control pathways in the ER and Golgi to (i) target the degradation of proteins that have exceeded their functional lifetime due to damage and/or misfolding and (ii) limit the toxic accumulation of specific proteins at the cell surface during proteotoxic stress.


2005 ◽  
Vol 41 ◽  
pp. 99-112 ◽  
Author(s):  
Yihong Ye

Misfolded endoplasmic reticulum (ER) proteins are eliminated by the retrotranslocation pathway in eukaryotes, which is an important physiological adaptation to ER stress. This pathway can be hijacked by certain viruses to destroy folded cellular proteins, such as MHC class I heavy chain. Recent studies have highlighted the importance of the ubiquitin–proteasome system (UPS) in this process.


2005 ◽  
Vol 169 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Eric D. Spear ◽  
Davis T.W. Ng

The endoplasmic reticulum (ER) maintains an environment essential for secretory protein folding. Consequently, the premature transport of polypeptides would be harmful to the cell. To avert this scenario, mechanisms collectively termed “ER quality control” prevent the transport of nascent polypeptides until they properly fold. Irreversibly misfolded molecules are sorted for disposal by the ER-associated degradation (ERAD) pathway. To better understand the relationship between quality control and ERAD, we studied a new misfolded variant of carboxypeptidase Y (CPY). The molecule was recognized and retained by ER quality control but failed to enter the ERAD pathway. Systematic analysis revealed that a single, specific N-linked glycan of CPY was required for sorting into the pathway. The determinant is dependent on the putative lectin-like receptor Htm1/Mnl1p. The discovery of a similar signal in misfolded proteinase A supported the generality of the mechanism. These studies show that specific signals embedded in glycoproteins can direct their degradation if they fail to fold.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Brian G Peterson ◽  
Morgan L Glaser ◽  
Tom A Rapoport ◽  
Ryan D Baldridge

Misfolded proteins in the lumen of the endoplasmic reticulum (ER) are retrotranslocated into the cytosol and polyubiquitinated before being degraded by the proteasome. The multi-spanning ubiquitin ligase Hrd1 forms the retrotranslocation channel and associates with three other membrane proteins (Hrd3, Usa1, Der1) of poorly defined function. The Hrd1 channel is gated by autoubiquitination, but how Hrd1 escapes degradation by the proteasome and returns to its inactive ground state is unknown. Here, we show that autoubiquitination of Hrd1 is counteracted by Ubp1, a deubiquitinating enzyme that requires its N-terminal transmembrane segment for activity towards Hrd1. The Hrd1 partner Hrd3 serves as a brake for autoubiquitination, while Usa1 attenuates Ubp1’s deubiquitination activity through an inhibitory effect of its UBL domain. These results lead to a model in which the Hrd1 channel is regulated by cycles of autoubiquitination and deubiquitination, reactions that are modulated by the other components of the Hrd1 complex.


2020 ◽  
Vol 295 (47) ◽  
pp. 16113-16120
Author(s):  
Avery M. Runnebohm ◽  
Kyle A. Richards ◽  
Courtney Broshar Irelan ◽  
Samantha M. Turk ◽  
Halie E. Vitali ◽  
...  

Translocation of proteins across biological membranes is essential for life. Proteins that clog the endoplasmic reticulum (ER) translocon prevent the movement of other proteins into the ER. Eukaryotes have multiple translocon quality control (TQC) mechanisms to detect and destroy proteins that persistently engage the translocon. TQC mechanisms have been defined using a limited panel of substrates that aberrantly occupy the channel. The extent of substrate overlap among TQC pathways is unknown. In this study, we found that two TQC enzymes, the ER-associated degradation ubiquitin ligase Hrd1 and zinc metalloprotease Ste24, promote degradation of characterized translocon-associated substrates of the other enzyme in Saccharomyces cerevisiae. Although both enzymes contribute to substrate turnover, our results suggest a prominent role for Hrd1 in TQC. Yeast lacking both Hrd1 and Ste24 exhibit a profound growth defect, consistent with overlapping function. Remarkably, two mutations that mildly perturb post-translational translocation and reduce the extent of aberrant translocon engagement by a model substrate diminish cellular dependence on TQC enzymes. Our data reveal previously unappreciated mechanistic complexity in TQC substrate detection and suggest that a robust translocon surveillance infrastructure maintains functional and efficient translocation machinery.


2008 ◽  
Vol 89 (5) ◽  
pp. 1122-1130 ◽  
Author(s):  
Kristina Oresic ◽  
Domenico Tortorella

Inhibition of cell-surface expression of major histocompatibility complex class I molecules by human cytomegalovirus (HCMV, a β-herpesvirus) promotes escape from recognition by CD8+ cytotoxic T cells. The HCMV US2 and US11 gene products induce class I downregulation during the early phase of HCMV infection by facilitating the degradation of class I heavy chains. The HCMV proteins promote the transport of the class I heavy chains across the endoplasmic reticulum (ER) membrane into the cytosol by a process referred to as ‘dislocation’, which is then followed by proteasome degradation. This process has striking similarities to the degradation of misfolded ER proteins mediated by ER quality control. Even though the major steps of the dislocation reaction have been characterized, the cellular proteins, specifically the ER chaperones involved in targeting class I for dislocation, have not been fully delineated. To elucidate the chaperones involved in HCMV-mediated class I dislocation, we utilized a chimeric class I heavy chain with an affinity tag at its carboxy terminus. Interestingly, US2 but not US11 continued to target the class I chimera for destruction, suggesting a structural limitation for US11-mediated degradation. Association studies in US2 cells and in cells that express a US2 mutant, US2–186HA, revealed that class I specifically interacts with calnexin, BiP and calreticulin. These findings demonstrate that US2-mediated class I destruction utilizes specific chaperones to facilitate class I dislocation. The data suggest a more general model in which the chaperones that mediate protein folding may also function during ER quality control to eliminate aberrant ER proteins.


Sign in / Sign up

Export Citation Format

Share Document