scholarly journals Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Robin M Harris ◽  
Barret D Pfeiffer ◽  
Gerald M Rubin ◽  
James W Truman

Drosophila central neurons arise from neuroblasts that generate neurons in a pair-wise fashion, with the two daughters providing the basis for distinct A and B hemilineage groups. 33 postembryonically-born hemilineages contribute over 90% of the neurons in each thoracic hemisegment. We devised genetic approaches to define the anatomy of most of these hemilineages and to assessed their functional roles using the heat-sensitive channel dTRPA1. The simplest hemilineages contained local interneurons and their activation caused tonic or phasic leg movements lacking interlimb coordination. The next level was hemilineages of similar projection cells that drove intersegmentally coordinated behaviors such as walking. The highest level involved hemilineages whose activation elicited complex behaviors such as takeoff. These activation phenotypes indicate that the hemilineages vary in their behavioral roles with some contributing to local networks for sensorimotor processing and others having higher order functions of coordinating these local networks into complex behavior.

2021 ◽  
Vol 15 (1) ◽  
pp. 3-15
Author(s):  
Thomas B. Shea

The responsiveness of the human nervous system ranges from the basic sensory interpretation and motor regulation to so-called higher-order functions such as emotion and consciousness. Aspects of higher-order functions are displayed by other mammals and birds. In efforts to understand how neuronal interaction can generate such a diverse functionality, murine embryonic cortical neurons were cultured on Petri dishes containing multi-electrode arrays that allowed recording and stimulation of neuronal activity. Despite the lack of major architectural features that govern nervous system development in situ, this overview of multiple studies demonstrated that these 2-dimensional ex vivo neuronal networks nevertheless recapitulate multiple key aspects of nervous system development and activity in situ, including density-dependent, the spontaneous establishment of a functional network that displayed complex signaling patterns, and responsiveness to environmental stimulation including generation of appropriate motor output and long-term potentiation. These findings underscore that the basic interplay of excitatory and inhibitory neuronal activity underlies all aspects of nervous system functionality. This reductionist system may be useful for further examination of neuronal function under developmental, homeostatic, and neurodegenerative conditions.


2020 ◽  
Vol 25 (3) ◽  
pp. 49
Author(s):  
Silvia Licciardi ◽  
Rosa Maria Pidatella ◽  
Marcello Artioli ◽  
Giuseppe Dattoli

In this paper, we show that the use of methods of an operational nature, such as umbral calculus, allows achieving a double target: on one side, the study of the Voigt function, which plays a pivotal role in spectroscopic studies and in other applications, according to a new point of view, and on the other, the introduction of a Voigt transform and its possible use. Furthermore, by the same method, we point out that the Hermite and Laguerre functions, extension of the corresponding polynomials to negative and/or real indices, can be expressed through a definition in a straightforward and unified fashion. It is illustrated how the techniques that we are going to suggest provide an easy derivation of the relevant properties along with generalizations to higher order functions.


2001 ◽  
Vol 204 (2) ◽  
pp. 305-314 ◽  
Author(s):  
A. Nighorn ◽  
P.J. Simpson ◽  
D.B. Morton

Guanylyl cyclases are usually characterized as being either soluble (sGCs) or receptor (rGCs). We have recently cloned a novel guanylyl cyclase, MsGC-I, from the developing nervous system of the hawkmoth Manduca sexta that cannot be classified as either an sGC or an rGC. MsGC-I shows highest sequence identity with receptor guanylyl cyclases throughout its catalytic and dimerization domains, but does not contain the ligand-binding, transmembrane or kinase-like domains characteristic of receptor guanylyl cyclases. In addition, MsGC-I contains a C-terminal extension of 149 amino acid residues. In this paper, we report the expression of MsGC-I in the adult. Northern blots show that it is expressed preferentially in the nervous system, with high levels in the pharate adult brain and antennae. In the antennae, immunohistochemical analyses show that it is expressed in the cell bodies and dendrites, but not axons, of olfactory receptor neurons. In the brain, it is expressed in a variety of sensory neuropils including the antennal and optic lobes. It is also expressed in structures involved in higher-order processing including the mushroom bodies and central complex. This complicated expression pattern suggests that this novel guanylyl cyclase plays an important role in mediating cyclic GMP levels in the nervous system of Manduca sexta.


1957 ◽  
Vol 34 (3) ◽  
pp. 306-333
Author(s):  
G. M. HUGHES

I. The effects of limb amputation and the cutting of commissures on the movements of the cockroach Blatta orientalis have been investigated with the aid of cinematography. Detailed analyses of changes in posture and rhythm of leg movements are given. 2. It is shown that quite marked changes occur following the amputation of a single leg or the cutting of a single commissure between the thoracic ganglia. 3. Changes following the amputation of a single leg are immediate and are such that the support normally provided by the missing leg is taken over by the two remaining legs on that side. Compensatory movements are also found in the contralateral legs. 4. When two legs of opposite sides are amputated it has been confirmed that the diagonal sequence tends to be adopted, but this is not invariably true. Besides alterations in the rhythm which this may involve, there are again adaptive modifications in the movements of the limbs with respect to the body. 5. When both comrnissures between the meso- and metathoracic ganglia are cut, the hind pair of legs fall out of rhythm with the other four legs. The observations on the effects of cutting commissures stress the importance of intersegmental pathways in co-ordination. 6. It is shown that all modifications following the amputation of legs may be related to the altered mechanical conditions. Some of the important factors involved in normal co-ordination are discussed, and it is suggested that the altered movements would be produced by the operation of these factors under the new conditions. It is concluded that the sensory inflow to the central nervous system is of major importance in the co-ordination of normal movement.


2017 ◽  
pp. 63-76
Author(s):  
Thomas Mailund

2017 ◽  
pp. 29-43
Author(s):  
Anto Aravinth

2000 ◽  
pp. 3-23
Author(s):  
Oswald Steward
Keyword(s):  

2012 ◽  
pp. 61-73
Author(s):  
Graham Hutton

Author(s):  
Christoph A. Herrmann ◽  
Christian Lengauer ◽  
Jan Laitenberger ◽  
Christian Schaller

Sign in / Sign up

Export Citation Format

Share Document