scholarly journals Stepwise nucleosome translocation by RSC remodeling complexes

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Bryan T Harada ◽  
William L Hwang ◽  
Sebastian Deindl ◽  
Nilanjana Chatterjee ◽  
Blaine Bartholomew ◽  
...  

The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1–2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome.

2000 ◽  
Vol 355 (1396) ◽  
pp. 441-447 ◽  
Author(s):  
T. Yanagida ◽  
S. Esaki ◽  
A. Hikikoshi Iwane ◽  
Y. Inoue ◽  
A. Ishijima ◽  
...  

Recent progress in single–molecule detection techniques is remarkable. These techniques have allowed the accurate determination of myosin–head–induced displacements and how mechanical cycles are coupled to ATP hydrolysis, by measuring individual mechanical events and chemical events of actomyosin directly at the single–molecule level. Here we review our recent work in which we have made detailed measurements of myosin step size and mechanochemical coupling, and propose a model of the myosin motor.


2020 ◽  
Author(s):  
Steffen Wolf ◽  
Benedikt Sohmen ◽  
Björn Hellenkamp ◽  
Johann Thurn ◽  
Gerhard Stock ◽  
...  

I.ABSTRACTSeveral indicators for a signal propagation from a binding site to a distant functional site have been found in the Hsp90 dimer. Here we determined a time-resolved pathway from ATP hydrolysis to changes in a distant folding substrate binding site. This was possible by combining single-molecule fluorescence-based methods with extensive atomistic nonequilibrium molecular dynamics simulations. We find that hydrolysis of one ATP effects a structural asymmetry in the full Hsp90 dimer that leads to the collapse of a central folding substrate binding site. Arg380 is the major mediator in transferring structural information from the nucleotide to the substrate binding site. This allosteric process occurs via hierarchical dynamics that involve timescales from picoto milliseconds and length scales from Ångstroms to several nanometers. We presume that similar hierarchical mechanisms are fundamental for information transfer through many other proteins.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sean P. Carney ◽  
Wen Ma ◽  
Kevin D. Whitley ◽  
Haifeng Jia ◽  
Timothy M. Lohman ◽  
...  

AbstractUvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex. Previous estimates of its step size have been indirect, and a consensus on its stepping mechanism is lacking. To dissect the mechanism underlying DNA unwinding, we use optical tweezers to measure directly the stepping behavior of UvrD as it processes a DNA hairpin and show that UvrD exhibits a variable step size averaging ~3 base pairs. Analyzing stepping kinetics across ATP reveals the type and number of catalytic events that occur with different step sizes. These single-molecule data reveal a mechanism in which UvrD moves one base pair at a time but sequesters the nascent single strands, releasing them non-uniformly after a variable number of catalytic cycles. Molecular dynamics simulations point to a structural basis for this behavior, identifying the protein-DNA interactions responsible for strand sequestration. Based on structural and sequence alignment data, we propose that this stepping mechanism may be conserved among other non-hexameric helicases.


2018 ◽  
Vol 115 (3) ◽  
pp. 513-518 ◽  
Author(s):  
Iris Grossman-Haham ◽  
Gabriel Rosenblum ◽  
Trishool Namani ◽  
Hagen Hofmann

Protein dynamics are typically captured well by rate equations that predict exponential decays for two-state reactions. Here, we describe a remarkable exception. The electron-transfer enzyme quiescin sulfhydryl oxidase (QSOX), a natural fusion of two functionally distinct domains, switches between open- and closed-domain arrangements with apparent power-law kinetics. Using single-molecule FRET experiments on time scales from nanoseconds to milliseconds, we show that the unusual open-close kinetics results from slow sampling of an ensemble of disordered domain orientations. While substrate accelerates the kinetics, thus suggesting a substrate-induced switch to an alternative free energy landscape of the enzyme, the power-law behavior is also preserved upon electron load. Our results show that the slow sampling of open conformers is caused by a variety of interdomain interactions that imply a rugged free energy landscape, thus providing a generic mechanism for dynamic disorder in multidomain enzymes.


1980 ◽  
Vol 35 (5-6) ◽  
pp. 431-438 ◽  
Author(s):  
Peter Dancker

Abstract ATPase activity and ATP-Pi exchange of unregulated (without tropomyosin-troponin) and regulated (with tropomyosin-troponin) acto-HMM were measured in media containing 0.2 mg/ml actin, HMM, and (when present) tropomyosin-troponin, 2 mM MgCl2, 10 m M KCl, 2 mM NaN3, 10 mM Pi(pH 7.0), 3 mM ATP. The following mean values for ATPase activity and for the rate of incorporation of P, into ATP (each per mg HMM and per min) were obtained: unregulated acto-HMM 0.33 nmol Pi and 0.33 nmol Pi, regulated acto-HMM 0.54 nmol Pi and 1.06 nmol P*. The ratio of P4 incorporation rate to ATPase activity was 1.01 × 10-3 for unregulated and 2.02 × 10-3 for regulated acto-HMM. From these ratios and from the overall free energy change of ATP hydrolysis it was calculated that under the prevailing experimental conditions in unregulated acto-HMM 62% and in regulated acto-HMM 66% of the free energy change of ATP hydrolysis occurs after the release of phosphate from actomyosin. It is probably this part of the free energy change that is used by the muscle for the performance of work.


2019 ◽  
Vol 20 (19) ◽  
pp. 4911 ◽  
Author(s):  
Xie ◽  
Guo ◽  
Chen

A general kinetic model is presented for the chemomechanical coupling of dimeric kinesin molecular motors with and without extension of their neck linkers (NLs). A peculiar feature of the model is that the rate constants of ATPase activity of a kinesin head are independent of the strain on its NL, implying that the heads of the wild-type kinesin dimer and the mutant with extension of its NLs have the same force-independent rate constants of the ATPase activity. Based on the model, an analytical theory is presented on the force dependence of the dynamics of kinesin dimers with and without extension of their NLs at saturating ATP. With only a few adjustable parameters, diverse available single molecule data on the dynamics of various kinesin dimers, such as wild-type kinesin-1, kinesin-1 with mutated residues in the NLs, kinesin-1 with extension of the NLs and wild-type kinesin-2, under varying force and ATP concentration, can be reproduced very well. Additionally, we compare the power production among different kinesin dimers, showing that the mutation in the NLs reduces the power production and the extension of the NLs further reduces the power production.


Biopolymers ◽  
2008 ◽  
Vol 89 (7) ◽  
pp. 565-577 ◽  
Author(s):  
James B. Munro ◽  
Andrea Vaiana ◽  
Kevin Y. Sanbonmatsu ◽  
Scott C. Blanchard

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Michael Schlierf ◽  
Ganggang Wang ◽  
Xiaojiang S Chen ◽  
Taekjip Ha

Most replicative helicases are hexameric, ring-shaped motor proteins that translocate on and unwind DNA. Despite extensive biochemical and structural investigations, how their translocation activity is utilized chemo-mechanically in DNA unwinding is poorly understood. We examined DNA unwinding by G40P, a DnaB-family helicase, using a single-molecule fluorescence assay with a single base pair resolution. The high-resolution assay revealed that G40P by itself is a very weak helicase that stalls at barriers as small as a single GC base pair and unwinds DNA with the step size of a single base pair. Binding of a single ATPγS could stall unwinding, demonstrating highly coordinated ATP hydrolysis between six identical subunits. We observed frequent slippage of the helicase, which is fully suppressed by the primase DnaG. We anticipate that these findings allow a better understanding on the fine balance of thermal fluctuation activation and energy derived from hydrolysis.


Biochemistry ◽  
2011 ◽  
Vol 50 (15) ◽  
pp. 3107-3115 ◽  
Author(s):  
Kirsten Dammertz ◽  
Martin Hengesbach ◽  
Mark Helm ◽  
G. Ulrich Nienhaus ◽  
Andrei Yu. Kobitski

2001 ◽  
Vol 114 (11) ◽  
pp. 1981-1998
Author(s):  
Amit Mehta

Recent experiments, drawing upon single-molecule, solution kinetic and structural techniques, have clarified our mechanistic understanding of class V myosins. The findings of the past two years can be summarized as follows: (1) Myosin V is a highly efficient processive motor, surpassing even conventional kinesin in the distance that individual molecules can traverse. (2) The kinetic scheme underlying ATP turnover resembles those of myosins I and II but with rate constants tuned to favor strong binding to actin. ADP release precedes dissociation from actin and is rate-limiting in the cycle. (3) Myosin V walks in strides averaging ∼36 nm, the long pitch pseudo-repeat of the actin helix, each step coupled to a single ATP hydrolysis. Such a unitary displacement, the largest molecular step size measured to date, is required for a processive myosin motor to follow a linear trajectory along a helical actin track.


Sign in / Sign up

Export Citation Format

Share Document