scholarly journals A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Elisabeth A Geyer ◽  
Alexander Burns ◽  
Beth A Lalonde ◽  
Xuecheng Ye ◽  
Felipe-Andres Piedra ◽  
...  

Microtubule dynamic instability depends on the GTPase activity of the polymerizing αβ-tubulin subunits, which cycle through at least three distinct conformations as they move into and out of microtubules. How this conformational cycle contributes to microtubule growing, shrinking, and switching remains unknown. Here, we report that a buried mutation in αβ-tubulin yields microtubules with dramatically reduced shrinking rate and catastrophe frequency. The mutation causes these effects by suppressing a conformational change that normally occurs in response to GTP hydrolysis in the lattice, without detectably changing the conformation of unpolymerized αβ-tubulin. Thus, the mutation weakens the coupling between the conformational and GTPase cycles of αβ-tubulin. By showing that the mutation predominantly affects post-GTPase conformational and dynamic properties of microtubules, our data reveal that the strength of the allosteric response to GDP in the lattice dictates the frequency of catastrophe and the severity of rapid shrinking.

2018 ◽  
Vol 52 (6) ◽  
pp. 2433-2456 ◽  
Author(s):  
Ayuna Barlukova ◽  
Diana White ◽  
Gérard Henry ◽  
Stéphane Honoré ◽  
Florence Hubert

Microtubules (MTs) are protein polymers that exhibit a unique type of behavior referred to as dynamic instability. That is, they undergo periods of growth (through the addition of GTP-tubulin) and shortening (through the subtraction of GDP-tubulin). Shortening events are very fast, where this transition is referred to as a catastrophe. There are many processes that regulate MT dynamic instability, however, recent experiments show that MT dynamics may be highly regulated by a MTs age, where young MTs are less likely to undergo shortening events than older ones. In this paper, we develop a novel modeling approach to describe how the age of a MT affects its dynamic properties. In particular, we extend on a previously developed model that describes MT dynamics, by proposing a new concept for GTP-tubulin hydrolysis (the process by which newly incorporated GTP-tubulin is hydrolyzed to lower energy GDP-tubulin). In particular, we assume that hydrolysis is mainly vectorial, age-dependent and delayed according to the GTP-tubulin incorporation into the MT. Through numerical simulation, we are able to show how MT age affects certain properties that define MT dynamics. For example, simulations illustrate how the aging process leads to an increase in the rate of GTP-tubulin hydrolysis for older MTs, as well as increases in catastrophe frequency. Also, since it has been found that MT dynamic instability is affected by chemotherapy microtubule-targeting agents (MTAs), we highlight the fact that our model can be used to investigate the action of MTAs on MT dynamics by varying certain model parameters.


Author(s):  
R.A Walker ◽  
S. Inoue ◽  
E.D. Salmon

Microtubules polymerized in vitro from tubulin purified free of microtubule-associated proteins exhibit dynamic instability (1,2,3). Free microtubule ends exist in persistent phases of elongation or rapid shortening with infrequent, but, abrupt transitions between these phases. The abrupt transition from elongation to rapid shortening is termed catastrophe and the abrupt transition from rapid shortening to elongation is termed rescue. A microtubule is an asymmetrical structure. The plus end grows faster than the minus end. The frequency of catastrophe of the plus end is somewhat greater than the minus end, while the frequency of rescue of the plus end in much lower than for the minus end (4).The mechanism of catastrophe is controversial, but for both the plus and minus microtubule ends, catastrophe is thought to be dependent on GTP hydrolysis. Microtubule elongation occurs by the association of tubulin-GTP subunits to the growing end. Sometime after incorporation into an elongating microtubule end, the GTP is hydrolyzed to GDP, yielding a core of tubulin-GDP capped by tubulin-GTP (“GTP-cap”).


BioEssays ◽  
2013 ◽  
Vol 35 (5) ◽  
pp. 452-461 ◽  
Author(s):  
Hugo Bowne‐Anderson ◽  
Marija Zanic ◽  
Monika Kauer ◽  
Jonathon Howard

2017 ◽  
Vol 24 (9) ◽  
pp. T1-T21 ◽  
Author(s):  
Rachana Rao Battaje ◽  
Dulal Panda

FtsZ, a homolog of tubulin, is found in almost all bacteria and archaea where it has a primary role in cytokinesis. Evidence for structural homology between FtsZ and tubulin came from their crystal structures and identification of the GTP box. Tubulin and FtsZ constitute a distinct family of GTPases and show striking similarities in many of their polymerization properties. The differences between them, more so, the complexities of microtubule dynamic behavior in comparison to that of FtsZ, indicate that the evolution to tubulin is attributable to the incorporation of the complex functionalities in higher organisms. FtsZ and microtubules function as polymers in cell division but their roles differ in the division process. The structural and partial functional homology has made the study of their dynamic properties more interesting. In this review, we focus on the application of the information derived from studies on FtsZ dynamics to study microtubule dynamics and vice versa. The structural and functional aspects that led to the establishment of the homology between the two proteins are explained to emphasize the network of FtsZ and microtubule studies and how they are connected.


2019 ◽  
Author(s):  
Y.-W. Kuo ◽  
O. Trottier ◽  
J. Howard

AbstractMicrotubules are dynamic cytoskeletal polymers whose growth and shrinkage are highly regulated as eukaryotic cells change shape, move and divide. One family of microtubule regulators includes the ATP-hydrolyzing enzymes spastin, katanin and fidgetin, which sever microtubule polymers into shorter fragments. Paradoxically, severases can increase microtubule number and mass in cells. Recent work with purified spastin and katanin accounts for this phenotype by showing that, in addition to severing, these enzymes modulate microtubule dynamics by accelerating the conversion of microtubules to the growing state and thereby promoting their regrowth. This leads to the observed exponential increase in microtubule mass. Spastin also influences the steady-state distribution of microtubule lengths, changing it from an exponential, as predicted by models of microtubule dynamic instability, to a peaked distribution. This effect of severing and regrowth by spastin on the microtubule length distribution has not been explained theoretically. To solve this problem, we formulated and solved a master equation for the time evolution of microtubule lengths in the presence of severing and microtubule dynamic instability. We then obtained numerical solutions to the steady-state length distribution and showed that the rate of severing and the speed of microtubule growth are the dominant parameters determining the steady-state length distribution. Furthermore, we found that the amplification rate is predicted to increase with severing, which is a new result. Our results establish a theoretical basis for how severing and dynamics together can serve to nucleate new microtubules, constituting a versatile mechanism to regulate microtubule length and mass.SignificanceThe numbers and lengths of microtubules are tightly regulated in cells. Severing enzymes fragment microtubules into shorter filaments and are important for cell division and tissue development. Previous work has shown that severing can lead to an increase in total microtubule number and mass, but the effect of severing on microtubule length is not understood quantitatively. Combining mathematical modeling and computational simulation, we solve the microtubule length distribution in the presence of severing enzymes and explore how severing activity and microtubule dynamics collectively control microtubule number and length. These results advance our understanding of the physical basis of severing as a regulatory mechanism shaping the cellular cytoskeletal network.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 314 ◽  
Author(s):  
Ryoma Ohi ◽  
Marija Zanic

Microtubule dynamics are fundamental for many aspects of cell physiology, but their mechanistic underpinnings remain unclear despite 40 years of intense research. In recent years, the continued union of reconstitution biochemistry, structural biology, and modeling has yielded important discoveries that deepen our understanding of microtubule dynamics. These studies, which we review here, underscore the importance of GTP hydrolysis-induced changes in tubulin structure as microtubules assemble, and highlight the fact that each aspect of microtubule behavior is the output of complex, multi-step processes. Although this body of work moves us closer to appreciating the key features of microtubule biochemistry that drive dynamic instability, the divide between our understanding of microtubules in isolation versus within the cellular milieu remains vast. Bridging this gap will serve as fertile grounds of cytoskeleton-focused research for many years to come.


2021 ◽  
Vol 11 (Suppl_1) ◽  
pp. S26-S26
Author(s):  
Alena Korshunova

Background: Eukaryotic end binding proteins (EBs) can follow the growing microtubule end. EBs play a crucial role in microtubule dynamic instability and promote simultaneously growth rate and catastrophe frequency. It makes EB-like proteins perspective drag targets for a wide number of diseases. But the molecular mechanism of tip tracking by EB-like proteins remains unknown. Studies of mutants have revealed that the conservative amino acid Q102 (numbering relative to the human EB1 protein) plays a key role in the recognition of the growing microtubule end. However, the 3D structure studies revealed that this amino acid has no bonds with tubulin. In this work, we performed structural and phylogenetic analysis of EBs proteins to identify a possible molecular mechanism behind the plus end tracking. Methods: UCSF Chimera10 was used for structural analysis. Phylogenetic analysis was performed with MEGA X software. 3D structures of EBs and microtubules with different states of GTP hydrolysis were used (pdb 3JAK, 3JAS, 3JAT, 3JAW, 3JAL, 3JAR, 6DPU, 6DPV, 6DPW). Results: We have shown that two conservative amino acids (K100, E106) should play an important role in the recognition of the microtubule plus end in addition to Q102. It was concluded that these amino acids together form the plus-end «navigation site» of EBs. Analysis of possible interaction of the «navigation site» amino acids with microtubules in different conformational states suggested that the main mechanism of growing microtubule end recognition is not due to an affinity increase for a certain state of tubulin in microtubules at their end, but it due to a significant affinity decrease in other parts of the microtubule as a result of steric clashes. Conclusion: Thus, the results of the analysis suggested the possible molecular mechanism that provides the tip tracking by EB-like proteins and allowed us to identify the key amino acids of this mechanism.


1992 ◽  
Vol 119 (5) ◽  
pp. 1271-1276 ◽  
Author(s):  
N R Gliksman ◽  
S F Parsons ◽  
E D Salmon

We used high-resolution video microscopy to visualize microtubule dynamic instability in extracts of interphase sea urchin eggs and to analyze the changes that occur upon addition of 0.8-2.5 microM okadaic acid, an inhibitor of phosphatase 1 and 2A (PP1, PP2a) (Bialojan, D., and A. Takai. 1988. Biochem. J. 256:283-290). Microtubule plus-ends in these extracts oscillated between the elongation and shortening phases of dynamic instability at frequencies typical for interphase cells. Switching from elongation to shortening (catastrophe) was frequent, but microtubules persisted and grew long because of frequent switching back to elongation (rescue). Addition of okadaic acid to the extract induced rapid (< 5 min) conversion to short, dynamic microtubules typical of mitosis. The frequency of catastrophe doubled and the velocities of elongation and shortening increased slightly; however, the major change was an elimination of rescue. Thus, modulation of the rescue frequency by phosphorylation-dependent mechanisms may be a major regulatory pathway for selectively controlling microtubule dynamics without dramatically changing velocities of microtubule elongation and shortening.


1997 ◽  
Vol 139 (4) ◽  
pp. 985-994 ◽  
Author(s):  
Sidney L. Shaw ◽  
Elaine Yeh ◽  
Paul Maddox ◽  
E.D. Salmon ◽  
Kerry Bloom

Localization of dynein–green fluorescent protein (GFP) to cytoplasmic microtubules allowed us to obtain one of the first views of the dynamic properties of astral microtubules in live budding yeast. Several novel aspects of microtubule function were revealed by time-lapse, three-dimensional fluorescence microscopy. Astral microtubules, about four to six in number for each pole, exhibited asynchronous dynamic instability throughout the cell cycle, growing at ≅0.3–1.5 μm/min toward the cell surface then switching to shortening at similar velocities back to the spindle pole body (SPB). During interphase, a conical array of microtubules trailed the SPB as the nucleus traversed the cytoplasm. Microtubule disassembly by nocodozole inhibited these movements, indicating that the nucleus was pushed around the interior of the cell via dynamic astral microtubules. These forays were evident in unbudded G1 cells, as well as in late telophase cells after spindle disassembly. Nuclear movement and orientation to the bud neck in S/G2 or G2/M was dependent on dynamic astral microtubules growing into the bud. The SPB and nucleus were then pulled toward the bud neck, and further microtubule growth from that SPB was mainly oriented toward the bud. After SPB separation and central spindle formation, a temporal delay in the acquisition of cytoplasmic dynein at one of the spindle poles was evident. Stable microtubule interactions with the cell cortex were rarely observed during anaphase, and did not appear to contribute significantly to spindle alignment or elongation into the bud. Alterations of microtubule dynamics, as observed in cells overexpressing dynein-GFP, resulted in eventual spindle misalignment. These studies provide the first mechanistic basis for understanding how spindle orientation and nuclear positioning are established and are indicative of a microtubule-based searching mechanism that requires dynamic microtubules for nuclear migration into the bud.


Sign in / Sign up

Export Citation Format

Share Document