scholarly journals Abstract P-33: Structural Basis for the Growing Microtubule End Recognition by End Binding Proteins

2021 ◽  
Vol 11 (Suppl_1) ◽  
pp. S26-S26
Author(s):  
Alena Korshunova

Background: Eukaryotic end binding proteins (EBs) can follow the growing microtubule end. EBs play a crucial role in microtubule dynamic instability and promote simultaneously growth rate and catastrophe frequency. It makes EB-like proteins perspective drag targets for a wide number of diseases. But the molecular mechanism of tip tracking by EB-like proteins remains unknown. Studies of mutants have revealed that the conservative amino acid Q102 (numbering relative to the human EB1 protein) plays a key role in the recognition of the growing microtubule end. However, the 3D structure studies revealed that this amino acid has no bonds with tubulin. In this work, we performed structural and phylogenetic analysis of EBs proteins to identify a possible molecular mechanism behind the plus end tracking. Methods: UCSF Chimera10 was used for structural analysis. Phylogenetic analysis was performed with MEGA X software. 3D structures of EBs and microtubules with different states of GTP hydrolysis were used (pdb 3JAK, 3JAS, 3JAT, 3JAW, 3JAL, 3JAR, 6DPU, 6DPV, 6DPW). Results: We have shown that two conservative amino acids (K100, E106) should play an important role in the recognition of the microtubule plus end in addition to Q102. It was concluded that these amino acids together form the plus-end «navigation site» of EBs. Analysis of possible interaction of the «navigation site» amino acids with microtubules in different conformational states suggested that the main mechanism of growing microtubule end recognition is not due to an affinity increase for a certain state of tubulin in microtubules at their end, but it due to a significant affinity decrease in other parts of the microtubule as a result of steric clashes. Conclusion: Thus, the results of the analysis suggested the possible molecular mechanism that provides the tip tracking by EB-like proteins and allowed us to identify the key amino acids of this mechanism.

2021 ◽  
Author(s):  
Benjamin J LaFrance ◽  
Johanna Roostalu ◽  
Gil Henkin ◽  
Basil J Greber ◽  
Rui Zhang ◽  
...  

Microtubules (MTs) are polymers of alphabeta-tubulin heterodimers that stochastically switch between growth and shrinkage phases. This dynamic instability is critically important for MT function. It is believed that GTP hydrolysis within the MT lattice is accompanied by destabilizing conformational changes, and that MT stability depends on a transiently existing GTP cap at the growing MT end. Here we use cryo-EM and TIRF microscopy of GTP hydrolysis-deficient MTs assembled from mutant recombinant human tubulin to investigate the structure of a GTP-bound MT lattice. We find that the GTP-MT lattice of two mutants in which the catalytically active glutamate in α-tubulin was substituted by inactive amino acids (E254A and E254N) is remarkably plastic. Undecorated E254A and E254N MTs with 13 protofilaments both have an expanded lattice, but display opposite protofilament twists, making these lattices distinct from the compacted lattice of wildtype GDP-MTs. End binding proteins of the EB family have the ability to compact both mutant GTP-lattices and to stabilize a negative twist, suggesting that they promote this transition also in the GTP cap of wildtype MTs, thereby contributing to the maturation of the MT structure. We also find that the MT seam appears to be stabilized in mutant GTP-MTs and destabilized in GDP-MTs, supporting the proposal that the seam plays an important role in MT stability. Together, these first high-resolution structures of truly GTP-bound MTs add mechanistic insight to our understanding of MT dynamic instability.


Author(s):  
R.A Walker ◽  
S. Inoue ◽  
E.D. Salmon

Microtubules polymerized in vitro from tubulin purified free of microtubule-associated proteins exhibit dynamic instability (1,2,3). Free microtubule ends exist in persistent phases of elongation or rapid shortening with infrequent, but, abrupt transitions between these phases. The abrupt transition from elongation to rapid shortening is termed catastrophe and the abrupt transition from rapid shortening to elongation is termed rescue. A microtubule is an asymmetrical structure. The plus end grows faster than the minus end. The frequency of catastrophe of the plus end is somewhat greater than the minus end, while the frequency of rescue of the plus end in much lower than for the minus end (4).The mechanism of catastrophe is controversial, but for both the plus and minus microtubule ends, catastrophe is thought to be dependent on GTP hydrolysis. Microtubule elongation occurs by the association of tubulin-GTP subunits to the growing end. Sometime after incorporation into an elongating microtubule end, the GTP is hydrolyzed to GDP, yielding a core of tubulin-GDP capped by tubulin-GTP (“GTP-cap”).


2015 ◽  
Vol 24 (4) ◽  
pp. 197-205
Author(s):  
Dwi Wulandari ◽  
Lisnawati Rachmadi ◽  
Tjahjani M. Sudiro

Background: E6 and E7 are oncoproteins of HPV16. Natural amino acid variation in HPV16 E6 can alter its carcinogenic potential. The aim of this study was to analyze phylogenetically E6 and E7 genes and proteins of HPV16 from Indonesia and predict the effects of single amino acid substitution on protein function. This analysis could be used to reduce time, effort, and research cost as initial screening in selection of protein or isolates to be tested in vitro or in vivo.Methods: In this study, E6 and E7 gene sequences were obtained from 12 samples of  Indonesian isolates, which  were compared with HPV16R (prototype) and 6 standard isolates in the category of European (E), Asian (As), Asian-American (AA), African-1 (Af-1), African-2 (Af-2), and North American (NA) branch from Genbank. Bioedit v.7.0.0 was used to analyze the composition and substitution of single amino acids. Phylogenetic analysis of E6 and E7 genes and proteins was performed using Clustal X (1.81) and NJPLOT softwares. Effects of single amino acid substitutions on protein function of E6 and E7 were analysed by SNAP.Results: Java variants and isolate ui66* belonged to European branch, while the others belonged to Asian and African branches. Twelve changes of amino acids were found in E6 and one in E7 proteins. SNAP analysis showed two non neutral mutations, i.e. R10I and C63G in E6 proteins. R10I mutations were found in Af-2 genotype (AF472509) and Indonesian isolates (Af2*), while C63G mutation was found only in Af2*.Conclusion: E6 proteins of HPV16 variants were more variable than E7. SNAP analysis showed that only E6 protein of African-2 branch had functional differences compared to HPV16R.


2020 ◽  
Vol 117 (20) ◽  
pp. 10806-10817 ◽  
Author(s):  
Michael P. Torrens-Spence ◽  
Ying-Chih Chiang ◽  
Tyler Smith ◽  
Maria A. Vicent ◽  
Yi Wang ◽  
...  

Radiation of the plant pyridoxal 5′-phosphate (PLP)-dependent aromatic l-amino acid decarboxylase (AAAD) family has yielded an array of paralogous enzymes exhibiting divergent substrate preferences and catalytic mechanisms. Plant AAADs catalyze either the decarboxylation or decarboxylation-dependent oxidative deamination of aromatic l-amino acids to produce aromatic monoamines or aromatic acetaldehydes, respectively. These compounds serve as key precursors for the biosynthesis of several important classes of plant natural products, including indole alkaloids, benzylisoquinoline alkaloids, hydroxycinnamic acid amides, phenylacetaldehyde-derived floral volatiles, and tyrosol derivatives. Here, we present the crystal structures of four functionally distinct plant AAAD paralogs. Through structural and functional analyses, we identify variable structural features of the substrate-binding pocket that underlie the divergent evolution of substrate selectivity toward indole, phenyl, or hydroxyphenyl amino acids in plant AAADs. Moreover, we describe two mechanistic classes of independently arising mutations in AAAD paralogs leading to the convergent evolution of the derived aldehyde synthase activity. Applying knowledge learned from this study, we successfully engineered a shortened benzylisoquinoline alkaloid pathway to produce (S)-norcoclaurine in yeast. This work highlights the pliability of the AAAD fold that allows change of substrate selectivity and access to alternative catalytic mechanisms with only a few mutations.


2017 ◽  
Vol 9 (2) ◽  
pp. 204-208 ◽  
Author(s):  
Emre SEVİNDİK

RuBisCO is an important enzyme for plants to photosynthesize and balance carbon dioxide in the atmosphere. This study aimed to perform sequence, physicochemical, phylogenetic and 3D (three-dimensional) comparative analyses of RuBisCO proteins in the Carthamus ssp. using various bioinformatics tools. The sequence lengths of the RuBisCO proteins were between 166 and 477 amino acids, with an average length of 411.8 amino acids. Their molecular weights (Mw) ranged from 18711.47 to 52843.09 Da; the most acidic and basic protein sequences were detected in C. tinctorius (pI = 5.99) and in C. tenuis (pI = 6.92), respectively. The extinction coefficients of RuBisCO proteins at 280 nm ranged from 17,670 to 69,830 M-1 cm-1, the instability index (II) values for RuBisCO proteins ranged from 33.31 to 39.39, while the GRAVY values of RuBisCO proteins ranged from -0.313 to -0.250. The most abundant amino acid in the RuBisCO protein was Gly (9.7%), while the least amino acid ratio was Trp (1.6 %). The putative phosphorylation sites of RuBisCO proteins were determined by NetPhos 2.0. Phylogenetic analysis revealed that RuBisCO proteins formed two main clades. A RAMPAGE analysis revealed that 96.3%-97.6% of residues were located in the favoured region of RuBisCO proteins. To predict the three dimensional (3D) structure of the RuBisCO proteins PyMOL was used. The results of the current study provide insights into fundamental characteristic of RuBisCO proteins in Carthamus ssp.


2018 ◽  
Vol 52 (6) ◽  
pp. 2433-2456 ◽  
Author(s):  
Ayuna Barlukova ◽  
Diana White ◽  
Gérard Henry ◽  
Stéphane Honoré ◽  
Florence Hubert

Microtubules (MTs) are protein polymers that exhibit a unique type of behavior referred to as dynamic instability. That is, they undergo periods of growth (through the addition of GTP-tubulin) and shortening (through the subtraction of GDP-tubulin). Shortening events are very fast, where this transition is referred to as a catastrophe. There are many processes that regulate MT dynamic instability, however, recent experiments show that MT dynamics may be highly regulated by a MTs age, where young MTs are less likely to undergo shortening events than older ones. In this paper, we develop a novel modeling approach to describe how the age of a MT affects its dynamic properties. In particular, we extend on a previously developed model that describes MT dynamics, by proposing a new concept for GTP-tubulin hydrolysis (the process by which newly incorporated GTP-tubulin is hydrolyzed to lower energy GDP-tubulin). In particular, we assume that hydrolysis is mainly vectorial, age-dependent and delayed according to the GTP-tubulin incorporation into the MT. Through numerical simulation, we are able to show how MT age affects certain properties that define MT dynamics. For example, simulations illustrate how the aging process leads to an increase in the rate of GTP-tubulin hydrolysis for older MTs, as well as increases in catastrophe frequency. Also, since it has been found that MT dynamic instability is affected by chemotherapy microtubule-targeting agents (MTAs), we highlight the fact that our model can be used to investigate the action of MTAs on MT dynamics by varying certain model parameters.


BioEssays ◽  
2013 ◽  
Vol 35 (5) ◽  
pp. 452-461 ◽  
Author(s):  
Hugo Bowne‐Anderson ◽  
Marija Zanic ◽  
Monika Kauer ◽  
Jonathon Howard

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5053
Author(s):  
Alina K. Bakunova ◽  
Alena Yu. Nikolaeva ◽  
Tatiana V. Rakitina ◽  
Tatiana Y. Isaikina ◽  
Maria G. Khrenova ◽  
...  

Among industrially important pyridoxal-5’-phosphate (PLP)-dependent transaminases of fold type IV D-amino acid transaminases are the least studied. However, the development of cascade enzymatic processes, including the synthesis of D-amino acids, renewed interest in their study. Here, we describe the identification, biochemical and structural characterization of a new D-amino acid transaminase from Haliscomenobacter hydrossis (Halhy). The new enzyme is strictly specific towards D-amino acids and their keto analogs; it demonstrates one of the highest rates of transamination between D-glutamate and pyruvate. We obtained the crystal structure of the Halhy in the holo form with the protonated Schiff base formed by the K143 and the PLP. Structural analysis revealed a novel set of the active site residues that differ from the key residues forming the active sites of the previously studied D-amino acids transaminases. The active site of Halhy includes three arginine residues, one of which is unique among studied transaminases. We identified critical residues for the Halhy catalytic activity and suggested functions of the arginine residues based on the comparative structural analysis, mutagenesis, and molecular modeling simulations. We suggested a strong positive charge in the O-pocket and the unshaped P-pocket as a structural code for the D-amino acid specificity among transaminases of PLP fold type IV. Characteristics of Halhy complement our knowledge of the structural basis of substrate specificity of D-amino acid transaminases and the sequence-structure-function relationships in these enzymes.


1985 ◽  
Vol 231 (2) ◽  
pp. 279-283 ◽  
Author(s):  
J T Deagen ◽  
P D Whanger

Since the exposure of rats to cadmium causes zinc to accumulate in metallothionein in liver and kidney but not in a similar protein in the testes, the properties of the low-Mr cadmium-binding proteins were investigated in rat testes. Weanling rats that had been given dietary cadmium for 6 weeks were injected with 109CdCl2 and subsequently killed, and the 109Cd-labelled low-Mr proteins from testes were purified. The pooled low-Mr cadmium-containing fractions from the gel-filtration (Sephadex G-75) columns were eluted through DEAE-Sephacel columns, yielding two peaks. Each of the individual peaks from this Sephacel column was further purified by rechromatography on DEAE-Sephacel and on Bio-Gel P-10 columns. Amino acid analysis of the two purified proteins revealed a low cysteine (about 3%) content, with aspartate, glutamate and glycine as the predominant amino acids. Thus these low-Mr cadmium-binding proteins induced by cadmium in rat testes do not appear to be metallothionein.


2004 ◽  
Vol 186 (24) ◽  
pp. 8301-8308 ◽  
Author(s):  
Deepan S. H. Shah ◽  
Gilles Joucla ◽  
Magali Remaud-Simeon ◽  
Roy R. B. Russell

ABSTRACT Glucansucrases of oral streptococci and Leuconostoc mesenteroides have a common pattern of structural organization and characteristically contain a domain with a series of tandem amino acid repeats in which certain residues are highly conserved, particularly aromatic amino acids and glycine. In some glucosyltransferases (GTFs) the repeat region has been identified as a glucan binding domain (GBD). Such GBDs are also found in several glucan binding proteins (GBP) of oral streptococci that do not have glucansucrase activity. Alignment of the amino acid sequences of 20 glucansucrases and GBP showed the widespread conservation of the 33-residue A repeat first identified in GtfI of Streptococcus downei. Site-directed mutagenesis of individual highly conserved residues in recombinant GBD of GtfI demonstrated the importance of the first tryptophan and the tyrosine-phenylalanine pair in the binding of dextran, as well as the essential contribution of a basic residue (arginine or lysine). A microplate binding assay was developed to measure the binding affinity of recombinant GBDs. GBD of GtfI was shown to be capable of binding glucans with predominantly α-1,3 or α-1,6 links, as well as alternating α-1,3 and α-1,6 links (alternan). Western blot experiments using biotinylated dextran or alternan as probes demonstrated a difference between the binding of streptococcal GTF and GBP and that of Leuconostoc glucansucrases. Experimental data and bioinformatics analysis showed that the A repeat motif is distinct from the 20-residue CW motif, which also has conserved aromatic amino acids and glycine and which occurs in the choline-binding proteins of Streptococcus pneumoniae and other organisms.


Sign in / Sign up

Export Citation Format

Share Document