scholarly journals HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Maxime J Kinet ◽  
Jennifer A Malin ◽  
Mary C Abraham ◽  
Elyse S Blum ◽  
Melanie R Silverman ◽  
...  

Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.

2016 ◽  
Author(s):  
Maxime J Kinet ◽  
Jennifer A Malin ◽  
Mary C Abraham ◽  
Elyse S Blum ◽  
Melanie R Silverman ◽  
...  

2017 ◽  
Author(s):  
Lena M. Kutscher ◽  
Wolfgang Keil ◽  
Shai Shaham

Clearance of dying cells is essential for development and homeostasis. Conserved genes mediate apoptotic cell removal, but whether these genes also control non-apoptotic cell removal is a major open question. Linker cell-type death (LCD) is a prevalent non-apoptotic developmental cell death process with features conserved from C. elegans to vertebrates. Using microfluidics-based long-term in vivo imaging, we show that unlike apoptotic cells, the C. elegans linker cell, which dies by LCD, is competitively phagocytosed by two neighboring cells, resulting in cell splitting. Subsequent cell elimination does not require apoptotic engulfment genes. Rather, we find that RAB-35 GTPase is a key coordinator of competitive phagocytosis onset and linker cell degradation. RAB-35 binds CNT-1, an ARF-6 GTPase activating protein; removes ARF-6, a degradation inhibitor, from phagosome membranes; and recruits RAB-5 and RAB-7 GTPases for phagolysosome maturation. We propose that RAB-35 and ARF-6 drive an evolutionarily conserved program eliminating cells dying by LCD.


2019 ◽  
Author(s):  
Qing Shen ◽  
Meiling Liang ◽  
Fan Yang ◽  
Yi Zhen Deng ◽  
Naweed I. Naqvi

AbstractWe identified that ferroptosis, an iron-dependent non-apoptotic cell death process, occurs in the rice blast fungus Magnaporthe oryzae, and plays a key role in infection-related development therein. Ferroptosis in the blast fungus was confirmed based on the four basic criteria. We confirmed the dependence of ferroptosis on ferric ions, and optimized C11-BODIPY581/591 as a key sensor for subcellular detection and quantification of lipid peroxides that mediate ferroptotic cell death during the pathogenic growth phase of M. oryzae. In addition, we uncovered an important regulatory function for reduced glutathione and the NADPH oxidases in generating/modulating the superoxide moieties for ferroptotic cell death in Magnaporthe. Ferroptosis was found to be necessary for the specific developmental cell death in conidia during appressorium maturation in rice blast. Such ferroptotic cell death initiated first in the terminal cell and progressed sequentially to the entire conidium. Chelation of iron or chemical inhibition of ferroptosis caused conidial cells to remain viable and led to strong defects in host invasion by M. oryzae. Precocious induction of ferroptosis in a blast-susceptible rice cultivar led to resistance against M. oryzae invasion. Interestingly, ferroptosis and autophagy were found to play inter-reliant or codependent roles in contributing to such precise cell death in M. oryzae conidia during pathogenic differentiation. Our study provides significant molecular insights into understanding the role of developmental cell death and iron homeostasis in infection-associated morphogenesis and in fungus-plant interaction in the blast pathosystem.


Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 1011-1022 ◽  
Author(s):  
T.L. Gumienny ◽  
E. Lambie ◽  
E. Hartwieg ◽  
H.R. Horvitz ◽  
M.O. Hengartner

Development of the nematode Caenorhabditis elegans is highly reproducible and the fate of every somatic cell has been reported. We describe here a previously uncharacterized cell fate in C. elegans: we show that germ cells, which in hermaphrodites can differentiate into sperm and oocytes, also undergo apoptotic cell death. In adult hermaphrodites, over 300 germ cells die, using the same apoptotic execution machinery (ced-3, ced-4 and ced-9) as the previously described 131 somatic cell deaths. However, this machinery is activated by a distinct pathway, as loss of egl-1 function, which inhibits somatic cell death, does not affect germ cell apoptosis. Germ cell death requires ras/MAPK pathway activation and is used to maintain germline homeostasis. We suggest that apoptosis eliminates excess germ cells that acted as nurse cells to provide cytoplasmic components to maturing oocytes.


2021 ◽  
Author(s):  
Amy Tarangelo ◽  
Joon Tae Kim ◽  
Jonathan Z Long ◽  
Scott J Dixon

Nucleotide synthesis is a metabolically demanding process essential for cell division. Several anti-cancer drugs that inhibit nucleotide metabolism induce apoptosis. How inhibition of nucleotide metabolism impacts non-apoptotic cell death is less clear. Here, we report that inhibition of nucleotide metabolism by the p53 pathway is sufficient to suppress the non-apoptotic cell death process of ferroptosis. Mechanistically, stabilization of wild-type p53 and induction of the p53 target gene CDKN1A (p21) leads to decreased expression of the ribonucleotide reductase (RNR) subunits RRM1 and RRM2. RNR is the rate-limiting enzyme of de novo nucleotide synthesis that reduces ribonucleotides to deoxyribonucleotides in a glutathione-dependent manner. Direct inhibition of RNR conserves glutathione which can then be used to limit the accumulation of toxic lipid peroxides, preventing the onset of ferroptosis. These results support a mechanism linking p53-dependent regulation of nucleotide metabolism to non-apoptotic cell death.


2019 ◽  
Author(s):  
Nicole L. Jenkins ◽  
Simon A. James ◽  
Agus Salim ◽  
Fransisca Sumardy ◽  
Terence P. Speed ◽  
...  

All eukaryotes require iron. Replication, detoxification, and a cancer-protective form of regulated cell death termed ferroptosis1, all depend on iron metabolism. Ferrous iron accumulates over adult lifetime in the Caenorhabditis elegans model of ageing2. Here we show that glutathione depletion is coupled to ferrous iron elevation in these animals, and that both occur in late life to prime cells for ferroptosis. We demonstrate that blocking ferroptosis, either by inhibition of lipid peroxidation or by limiting iron retention, mitigates age-related cell death and markedly increases lifespan and healthspan in C. elegans. Temporal scaling of lifespan is not evident when ferroptosis is inhibited, consistent with this cell death process acting at specific life phases to induce organismal frailty, rather than contributing to a constant ageing rate. Because excess age-related iron elevation in somatic tissue, particularly in brain3–5, is thought to contribute to degenerative disease6, 7, our data indicate that post-developmental interventions to limit ferroptosis may promote healthy ageing.


2002 ◽  
Vol 2 ◽  
pp. 1569-1578 ◽  
Author(s):  
David J. Granville ◽  
Roberta A. Gottlieb

The past 5 years has seen an intense surge in research devoted toward understanding the critical role of mitochondria in the regulation of cell death. Apoptosis can be initiated by a wide array of stimuli, inducing multiple signaling pathways that, for the most part, converge at the mitochondrion. Although classically considered the powerhouses of the cell, it is now understood that mitochondria are also “gatekeepers” that ultimately determine the fate of the cell. The mitochondrial decision as to whether a cell lives or dies is complex, involving protein-protein interactions, ionic changes, reactive oxygen species, and other mechanisms that require further elucidation. Once the death process is initiated, mitochondria undergo conformational changes, resulting in the release of cytochrome c (cyt c), caspases, endonucleases, and other factors leading to the onset and execution of apoptosis. The present review attempts to outline the complex milieu of events regulating the mitochondrial commitment to and processes involved in the implementation of the executioner phase of apoptotic cell death.


Sign in / Sign up

Export Citation Format

Share Document