scholarly journals Target-specific membrane potential dynamics of neocortical projection neurons during goal-directed behavior

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Takayuki Yamashita ◽  
Carl CH Petersen

Goal-directed behavior involves distributed neuronal circuits in the mammalian brain, including diverse regions of neocortex. However, the cellular basis of long-range cortico-cortical signaling during goal-directed behavior is poorly understood. Here, we recorded membrane potential of excitatory layer 2/3 pyramidal neurons in primary somatosensory barrel cortex (S1) projecting to either primary motor cortex (M1) or secondary somatosensory cortex (S2) during a whisker detection task, in which thirsty mice learn to lick for water reward in response to a whisker deflection. Whisker stimulation in ‘Good performer’ mice, but not ‘Naive’ mice, evoked long-lasting biphasic depolarization correlated with task performance in S2-projecting (S2-p) neurons, but not M1-projecting (M1-p) neurons. Furthermore, S2-p neurons, but not M1-p neurons, became excited during spontaneous unrewarded licking in ‘Good performer’ mice, but not in ‘Naive’ mice. Thus, a learning-induced, projection-specific signal from S1 to S2 may contribute to goal-directed sensorimotor transformation of whisker sensation into licking motor output.

2016 ◽  
Vol 116 (3) ◽  
pp. 1261-1274 ◽  
Author(s):  
Amanda K. Kinnischtzke ◽  
Erika E. Fanselow ◽  
Daniel J. Simons

The functional role of input from the primary motor cortex (M1) to primary somatosensory cortex (S1) is unclear; one key to understanding this pathway may lie in elucidating the cell-type specific microcircuits that connect S1 and M1. Recently, we discovered that a subset of pyramidal neurons in the infragranular layers of S1 receive especially strong input from M1 (Kinnischtzke AK, Simons DJ, Fanselow EE. Cereb Cortex 24: 2237–2248, 2014), suggesting that M1 may affect specific classes of pyramidal neurons differently. Here, using combined optogenetic and retrograde labeling approaches in the mouse, we examined the strengths of M1 inputs to five classes of infragranular S1 neurons categorized by their projections to particular cortical and subcortical targets. We found that the magnitude of M1 synaptic input to S1 pyramidal neurons varies greatly depending on the projection target of the postsynaptic neuron. Of the populations examined, M1-projecting corticocortical neurons in L6 received the strongest M1 inputs, whereas ventral posterior medial nucleus-projecting corticothalamic neurons, also located in L6, received the weakest. Each population also possessed distinct intrinsic properties. The results suggest that M1 differentially engages specific classes of S1 projection neurons, thereby regulating the motor-related influence S1 exerts over subcortical structures.


2009 ◽  
Vol 3 ◽  
pp. JEN.S2921
Author(s):  
Lieselotte Cnops ◽  
Annemie Cuyvers ◽  
Tjing-Tjing Hu ◽  
Lutgarde Arckens

We here report on the immunolocalization of Dynamin I (Dyn I) in neurons of the visual system of the cat. The lateral geniculate nucleus (LGN) complex displayed abundant Dyn I immunoreactivity in typical relay cells of the X-, Y- and W-pathway. The superficial and deep layers of the superior colliculus were also populated by Dyn I-immunoreactive projection neurons of the W- and Y-cell system. In primary visual areas 17 and 18, many densely packed layer VI neurons were intensely stained. A clear Dyn I signal was also demonstrated in pyramidal neurons of supragranular layers II and III, while layer IV displayed low Dyn I immunoreactivity. Additionally, area 18 displayed larger border pyramidal neurons in layer III compared to area 17. Generally, Dyn I was localized to the cell body and dendrites of neurons, to the neuropil and sometimes also to axon bundles. Typically, the Dyn I signal was not always uniformly distributed within the somatodendritic compartment. Based on its widespread distribution mainly in projection neurons Dyn I may play a fundamental role in mature neurons of different cortical and subcortical structures of the adult mammalian brain.


2020 ◽  
Author(s):  
Nari Kim ◽  
Sangkyu Bahn ◽  
Joon Ho Choi ◽  
Jinseop S. Kim ◽  
Jong-Cheol Rah

ABSTRACTThe posterior medial nucleus of the thalamus (POm) and vibrissal primary motor cortex (vM1) convey essential information to the barrel cortex (S1BF) regarding whisker position and movement. Therefore, understanding the relative spatial relationships of these two inputs is critical prerequisites to acquire insight into how S1 synthesizes information to interpret the location of an object. Using array tomography, we identified the locations of synapses from vM1 and POm on distal tuft dendrites of L5 pyramidal neurons. We found that synapses from vM1 and POm are spatially clustered on the same set of dendrites with unusually high density. Furthermore, the clusters of vM1 and POm synapses colocalize each other. These findings suggest that synaptic clusters, but not dendritic branches, act as functional units and cooperatively contribute to nonlinear dendritic responses.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mingzhao Su ◽  
Junhua Liu ◽  
Baocong Yu ◽  
Kaixing Zhou ◽  
Congli Sun ◽  
...  

AbstractThe rodent whisker-barrel cortex system has been established as an ideal model for studying sensory information integration. The barrel cortex consists of barrel and septa columns that receive information input from the lemniscal and paralemniscal pathways, respectively. Layer 5a is involved in both barrel and septa circuits and play a key role in information integration. However, the role of layer 5a in the development of the barrel cortex remains unclear. Previously, we found that calretinin is dynamically expressed in layer 5a. In this study, we analyzed calretinin KO mice and found that the dendritic complexity and length of layer 5a pyramidal neurons were significantly decreased after calretinin ablation. The membrane excitability and excitatory synaptic transmission of layer 5a neurons were increased. Consequently, the organization of the barrels was impaired. Moreover, layer 4 spiny stellate cells were not able to properly gather, leading to abnormal formation of barrel walls as the ratio of barrel/septum size obviously decreased. Calretinin KO mice exhibited deficits in exploratory and whisker-associated tactile behaviors as well as social novelty preference. Our study expands our knowledge of layer 5a pyramidal neurons in the formation of barrel walls and deepens the understanding of the development of the whisker-barrel cortex system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Feng Yi ◽  
Tavita Garrett ◽  
Karl Deisseroth ◽  
Heikki Haario ◽  
Emily Stone ◽  
...  

AbstractParvalbumin-containing projection neurons of the medial-septum-diagonal band of Broca ($$\hbox {PV}_{\text{MS-DBB}}$$ PV MS-DBB ) are essential for hippocampal rhythms and learning operations yet are poorly understood at cellular and synaptic levels. We combined electrophysiological, optogenetic, and modeling approaches to investigate $$\hbox {PV}_{\text{MS-DBB}}$$ PV MS-DBB neuronal properties. $$\hbox {PV}_{\text{MS-DBB}}$$ PV MS-DBB neurons had intrinsic membrane properties distinct from acetylcholine- and somatostatin-containing MS-DBB subtypes. Viral expression of the fast-kinetic channelrhodopsin ChETA-YFP elicited action potentials to brief (1–2 ms) 470 nm light pulses. To investigate $$\hbox {PV}_{\text{MS-DBB}}$$ PV MS-DBB transmission, light pulses at 5–50 Hz frequencies generated trains of inhibitory postsynaptic currents (IPSCs) in CA1 stratum oriens interneurons. Using a similar approach, optogenetic activation of local hippocampal PV ($$\hbox {PV}_{\text{HC}}$$ PV HC ) neurons generated trains of $$\hbox {PV}_{\text{HC}}$$ PV HC -mediated IPSCs in CA1 pyramidal neurons. Both synapse types exhibited short-term depression (STD) of IPSCs. However, relative to $$\hbox {PV}_{\text{HC}}$$ PV HC synapses, $$\hbox {PV}_{\text{MS-DBB}}$$ PV MS-DBB synapses possessed lower initial release probability, transiently resisted STD at gamma (20–50 Hz) frequencies, and recovered more rapidly from synaptic depression. Experimentally-constrained mathematical synapse models explored mechanistic differences. Relative to the $$\hbox {PV}_{\text{HC}}$$ PV HC model, the $$\hbox {PV}_{\text{MS-DBB}}$$ PV MS-DBB model exhibited higher sensitivity to calcium accumulation, permitting a faster rate of calcium-dependent recovery from STD. In conclusion, resistance of $$\hbox {PV}_{\text{MS-DBB}}$$ PV MS-DBB synapses to STD during short gamma bursts enables robust long-range GABAergic transmission from MS-DBB to hippocampus.


2021 ◽  
Vol 118 (52) ◽  
pp. e2112212118
Author(s):  
Jiseok Lee ◽  
Joanna Urban-Ciecko ◽  
Eunsol Park ◽  
Mo Zhu ◽  
Stephanie E. Myal ◽  
...  

Immediate-early gene (IEG) expression has been used to identify small neural ensembles linked to a particular experience, based on the principle that a selective subset of activated neurons will encode specific memories or behavioral responses. The majority of these studies have focused on “engrams” in higher-order brain areas where more abstract or convergent sensory information is represented, such as the hippocampus, prefrontal cortex, or amygdala. In primary sensory cortex, IEG expression can label neurons that are responsive to specific sensory stimuli, but experience-dependent shaping of neural ensembles marked by IEG expression has not been demonstrated. Here, we use a fosGFP transgenic mouse to longitudinally monitor in vivo expression of the activity-dependent gene c-fos in superficial layers (L2/3) of primary somatosensory cortex (S1) during a whisker-dependent learning task. We find that sensory association training does not detectably alter fosGFP expression in L2/3 neurons. Although training broadly enhances thalamocortical synaptic strength in pyramidal neurons, we find that synapses onto fosGFP+ neurons are not selectively increased by training; rather, synaptic strengthening is concentrated in fosGFP− neurons. Taken together, these data indicate that expression of the IEG reporter fosGFP does not facilitate identification of a learning-specific engram in L2/3 in barrel cortex during whisker-dependent sensory association learning.


2007 ◽  
Vol 97 (3) ◽  
pp. 2215-2229 ◽  
Author(s):  
Allan T. Gulledge ◽  
Susanna B. Park ◽  
Yasuo Kawaguchi ◽  
Greg J. Stuart

Acetylcholine (ACh) is a neurotransmitter critical for normal cognition. Here we demonstrate heterogeneity of cholinergic signaling in neocortical neurons in the rat prefrontal, somatosensory, and visual cortex. Focal ACh application (100 μM) inhibited layer 5 pyramidal neurons in all cortical areas via activation of an apamin-sensitive SK-type calcium-activated potassium conductance. Cholinergic inhibition was most robust in prefrontal layer 5 neurons, where it relies on the same signal transduction mechanism (M1-like receptors, IP3-dependent calcium release, and SK-channels) as exists in somatosensory pyramidal neurons. Pyramidal neurons in layer 2/3 were less responsive to ACh, but substantial apamin-sensitive inhibitory responses occurred in deep layer 3 neurons of the visual cortex. ACh was only inhibitory when presented near the somata of layer 5 pyramidal neurons, where repetitive ACh applications generated discrete inhibitory events at frequencies of up to ∼0.5 Hz. Fast-spiking (FS) nonpyramidal neurons in all cortical areas were unresponsive to ACh. When applied to non-FS interneurons in layers 2/3 and 5, ACh generated mecamylamine-sensitive nicotinic responses (38% of cells), apamin-insensitive hyperpolarizing responses, with or without initial nicotinic depolarization (7% of neurons), or no response at all (55% of cells). Responses in interneurons were similar across cortical layers and regions but were correlated with cellular physiology and the expression of biochemical markers associated with different classes of nonpyramidal neurons. Finally, ACh generated nicotinic responses in all layer 1 neurons tested. These data demonstrate that phasic cholinergic input can directly inhibit projection neurons throughout the cortex while sculpting intracortical processing, especially in superficial layers.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Madhur Parashar ◽  
Kasturi Saha ◽  
Sharba Bandyopadhyay

Abstract Sensing neuronal action potential associated magnetic fields (APMFs) is an emerging viable alternative of functional brain mapping. Measurement of APMFs of large axons of worms have been possible due to their size. In the mammalian brain, axon sizes, their numbers and routes, restricts using such functional imaging methods. With a segmented model of mammalian pyramidal neurons, we show that the APMF of intra-axonal currents in the axon hillock are two orders of magnitude larger than other neuronal locations. Expected 2D magnetic field maps of naturalistic spiking activity of a volume of neurons via widefield diamond-nitrogen-vacancy-center-magnetometry were simulated. A dictionary-based matching pursuit type algorithm applied to the data using the axon-hillock’s APMF signature allowed spatiotemporal reconstruction of action potentials in the volume of brain tissue at single cell resolution. Enhancement of APMF signals coupled with magnetometry advances thus can potentially replace current functional brain mapping techniques.


Sign in / Sign up

Export Citation Format

Share Document