scholarly journals Travel fosters tool use in wild chimpanzees

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Thibaud Gruber ◽  
Klaus Zuberbühler ◽  
Christof Neumann

Ecological variation influences the appearance and maintenance of tool use in animals, either due to necessity or opportunity, but little is known about the relative importance of these two factors. Here, we combined long-term behavioural data on feeding and travelling with six years of field experiments in a wild chimpanzee community. In the experiments, subjects engaged with natural logs, which contained energetically valuable honey that was only accessible through tool use. Engagement with the experiment was highest after periods of low fruit availability involving more travel between food patches, while instances of actual tool-using were significantly influenced by prior travel effort only. Additionally, combining data from the main chimpanzee study communities across Africa supported this result, insofar as groups with larger travel efforts had larger tool repertoires. Travel thus appears to foster tool use in wild chimpanzees and may also have been a driving force in early hominin technological evolution.

2017 ◽  
Author(s):  
Kendra L. Lawrence ◽  
David H Wise

Background. Theory predicts strong bottom-up control in detritus-based food webs, yet field experiments with detritus-based terrestrial systems have uncovered contradictory evidence regarding the strength and pervasiveness of bottom-up control processes. Two factors likely leading to contradictory results are experiment duration, which influences exposure to temporal variation in abiotic factors such as rainfall and affects the likelihood of detecting approach to a new equilibrium; and openness of the experimental units to immigration and migration. To investigate the contribution of these two factors, we conducted a long-term experiment with open and fenced plots in the forest that was the site of an earlier, short-term experiment (3.5 months) with open plots (Chen & Wise 1999) that produced evidence of strong bottom-up control for 14 taxonomic groupings of primary consumers of litter and fungi (microbi-detritivores) and their predators. Methods. We added artificial high-quality detritus to ten 2 x 2-m forest-floor plots at bi-weekly intervals from April through September in three consecutive years (Supplemented treatment). Ten comparable Ambient plots were controls. Half of the Supplemented and Ambient plots were enclosed by metal fencing. Results. Arthropod community structure (based upon 18 response variables) diverged over time between Supplemented and Ambient treatments, with no effect of Fencing on the multivariate response pattern. Fencing possibly influenced only ca. 20% of the subsequent univariate analyses. Multi- and univariate analyses revealed bottom-up control by fall of Year 1 of some, but not all, microbi-detritivores and predators. During the following two years the pattern of responses became more complex than that observed by Chen & Wise (1999). Some taxa showed consistent bottom-up control whereas many did not. Variation across years could not be explained completely by differences in rainfall because some taxa exhibited negative, not positive, responses to detrital supplementation. Discussion. Our 3-yr experiment did not confirm the conclusion of strong, pervasive bottom-up control of microbi-detritivores and predators reported by Chen and Wise (1999). Our longer-term experiment revealed a more complex pattern of responses, a pattern much closer to the range of outcomes reported in the literature for many short-term experiments. Much of the variation in responses across studies likely reflects variation in factors such as rainfall and the quality of added detritus. Nevertheless, it is also possible that long-term resource enhancement can drive a community towards a new equilibrium state that differs from what would have been predicted from the initial short-term responses exhibited by primary and secondary consumers.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3572 ◽  
Author(s):  
Kendra L. Lawrence ◽  
David H. Wise

Background Theory predicts strong bottom-up control in detritus-based food webs, yet field experiments with detritus-based terrestrial systems have uncovered contradictory evidence regarding the strength and pervasiveness of bottom-up control processes. Two factors likely leading to contradictory results are experiment duration, which influences exposure to temporal variation in abiotic factors such as rainfall and affects the likelihood of detecting approach to a new equilibrium; and openness of the experimental units to immigration and emigration. To investigate the contribution of these two factors, we conducted a long-term experiment with open and fenced plots in the forest that was the site of an earlier, short-term experiment (3.5 months) with open plots (Chen & Wise, 1999) that produced evidence of strong bottom-up control for 14 taxonomic groupings of primary consumers of fungi and detritus (microbi-detritivores) and their predators. Methods We added artificial high-quality detritus to ten 2 × 2-m forest-floor plots at bi-weekly intervals from April through September in three consecutive years (Supplemented treatment). Ten comparable Ambient plots were controls. Half of the Supplemented and Ambient plots were enclosed by metal fencing. Results Arthropod community structure (based upon 18 response variables) diverged over time between Supplemented and Ambient treatments, with no effect of Fencing on the multivariate response pattern. Fencing possibly influenced only ca. 30% of the subsequent univariate analyses. Multi- and univariate analyses revealed bottom-up control during Year 1 of some, but not all, microbi-detritivores and predators. During the following two years the pattern of responses became more complex than that observed by Chen & Wise (1999). Some taxa showed consistent bottom-up control whereas others did not. Variation across years could not be explained completely by differences in rainfall because some taxa exhibited negative, not positive, responses to detrital supplementation. Discussion Our 3-year experiment did not confirm the conclusion of strong, pervasive bottom-up control of both microbi-detritivores and predators reported by Chen & Wise (1999). Our longer-term experiment revealed a more complex pattern of responses, a pattern much closer to the range of outcomes reported in the literature for many short-term experiments. Much of the variation in responses across studies likely reflects variation in abiotic and biotic factors and the quality of added detritus. Nevertheless, it is also possible that long-term resource enhancement can drive a community towards a new equilibrium state that differs from what would have been predicted from the initial short-term responses exhibited by primary and secondary consumers.


2017 ◽  
Author(s):  
Kendra L. Lawrence ◽  
David H Wise

Background. Theory predicts strong bottom-up control in detritus-based food webs, yet field experiments with detritus-based terrestrial systems have uncovered contradictory evidence regarding the strength and pervasiveness of bottom-up control processes. Two factors likely leading to contradictory results are experiment duration, which influences exposure to temporal variation in abiotic factors such as rainfall and affects the likelihood of detecting approach to a new equilibrium; and openness of the experimental units to immigration and migration. To investigate the contribution of these two factors, we conducted a long-term experiment with open and fenced plots in the forest that was the site of an earlier, short-term experiment (3.5 months) with open plots (Chen & Wise 1999) that produced evidence of strong bottom-up control for 14 taxonomic groupings of primary consumers of litter and fungi (microbi-detritivores) and their predators. Methods. We added artificial high-quality detritus to ten 2 x 2-m forest-floor plots at bi-weekly intervals from April through September in three consecutive years (Supplemented treatment). Ten comparable Ambient plots were controls. Half of the Supplemented and Ambient plots were enclosed by metal fencing. Results. Arthropod community structure (based upon 18 response variables) diverged over time between Supplemented and Ambient treatments, with no effect of Fencing on the multivariate response pattern. Fencing possibly influenced only ca. 20% of the subsequent univariate analyses. Multi- and univariate analyses revealed bottom-up control by fall of Year 1 of some, but not all, microbi-detritivores and predators. During the following two years the pattern of responses became more complex than that observed by Chen & Wise (1999). Some taxa showed consistent bottom-up control whereas many did not. Variation across years could not be explained completely by differences in rainfall because some taxa exhibited negative, not positive, responses to detrital supplementation. Discussion. Our 3-yr experiment did not confirm the conclusion of strong, pervasive bottom-up control of microbi-detritivores and predators reported by Chen and Wise (1999). Our longer-term experiment revealed a more complex pattern of responses, a pattern much closer to the range of outcomes reported in the literature for many short-term experiments. Much of the variation in responses across studies likely reflects variation in factors such as rainfall and the quality of added detritus. Nevertheless, it is also possible that long-term resource enhancement can drive a community towards a new equilibrium state that differs from what would have been predicted from the initial short-term responses exhibited by primary and secondary consumers.


2011 ◽  
Vol 48 (No. 1) ◽  
pp. 20-26
Author(s):  
M. Birkás ◽  
T. Szalai ◽  
C. Gyuricza ◽  
M. Gecse ◽  
K. Bordás

This research was instigated by the fact that during the last decade annually repeated shallow disk tillage on the same field became frequent practice in Hungary. In order to study the changes of soil condition associated with disk tillage and to assess it is consequences, long-term tillage field experiments with different levels of nutrients were set up in 1991 (A) and in 1994 (B) on Chromic Luvisol at Gödöllö. The effects of disk tillage (D) and disk tillage combined with loosening (LD) on soil condition, on yield of maize and winter wheat, and on weed infestation were examined. The evaluation of soil condition measured by cone index and bulk density indicated that use of disking annually resulted in a dense soil layer below the disking depth (diskpan-compaction). It was found, that soil condition deteriorated by diskpan-compaction decreased the yield of maize significantly by 20 and 42% (w/w), and that of wheat by 13 and 15% (w/w) when compared to soils with no diskpan-compaction. Averaged over seven years, and three fertilizer levels, the cover % of the total, grass and perennial weeds on loosened soils were 73, 69 and 65% of soils contained diskpan-compaction.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2084
Author(s):  
Kostas Nizamis ◽  
Alkinoos Athanasiou ◽  
Sofia Almpani ◽  
Christos Dimitrousis ◽  
Alexander Astaras

Recent advances in the field of neural rehabilitation, facilitated through technological innovation and improved neurophysiological knowledge of impaired motor control, have opened up new research directions. Such advances increase the relevance of existing interventions, as well as allow novel methodologies and technological synergies. New approaches attempt to partially overcome long-term disability caused by spinal cord injury, using either invasive bridging technologies or noninvasive human–machine interfaces. Muscular dystrophies benefit from electromyography and novel sensors that shed light on underlying neuromotor mechanisms in people with Duchenne. Novel wearable robotics devices are being tailored to specific patient populations, such as traumatic brain injury, stroke, and amputated individuals. In addition, developments in robot-assisted rehabilitation may enhance motor learning and generate movement repetitions by decoding the brain activity of patients during therapy. This is further facilitated by artificial intelligence algorithms coupled with faster electronics. The practical impact of integrating such technologies with neural rehabilitation treatment can be substantial. They can potentially empower nontechnically trained individuals—namely, family members and professional carers—to alter the programming of neural rehabilitation robotic setups, to actively get involved and intervene promptly at the point of care. This narrative review considers existing and emerging neural rehabilitation technologies through the perspective of replacing or restoring functions, enhancing, or improving natural neural output, as well as promoting or recruiting dormant neuroplasticity. Upon conclusion, we discuss the future directions for neural rehabilitation research, diagnosis, and treatment based on the discussed technologies and their major roadblocks. This future may eventually become possible through technological evolution and convergence of mutually beneficial technologies to create hybrid solutions.


2021 ◽  
Vol 126 ◽  
pp. 126263
Author(s):  
Mario Fontana ◽  
Gilles Bélanger ◽  
Juliane Hirte ◽  
Noura Ziadi ◽  
Saïd Elfouki ◽  
...  

2013 ◽  
Vol 292 ◽  
pp. 64-74 ◽  
Author(s):  
Katalin Csilléry ◽  
Maëlle Seignobosc ◽  
Valentine Lafond ◽  
Georges Kunstler ◽  
Benoît Courbaud

Sign in / Sign up

Export Citation Format

Share Document