scholarly journals Corrupted adipose tissue endogenous myelopoiesis initiates diet-induced metabolic disease

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Elodie Luche ◽  
Virginie Robert ◽  
Vincent Cuminetti ◽  
Celine Pomié ◽  
Quentin Sastourné-Arrey ◽  
...  

Activation and increased numbers of inflammatory macrophages, in adipose tissue (AT) are deleterious in metabolic diseases. Up to now, AT macrophages (ATM) accumulation was considered to be due to blood infiltration or local proliferation, although the presence of resident hematopoietic stem/progenitor cells (Lin-/Sca+/c-Kit+; LSK phenotype) in the AT (AT-LSK) has been reported. By using transplantation of sorted AT-LSK and gain and loss of function studies we show that some of the inflammatory ATM inducing metabolic disease, originate from resident AT-LSK. Transplantation of AT-LSK sorted from high fat diet-fed (HFD) mice is sufficient to induce ATM accumulation, and to transfer metabolic disease in control mice. Conversely, the transplantation of control AT-LSK improves both AT-inflammation and glucose homeostasis in HFD mice. Our results clearly demonstrate that resident AT-LSK are one of the key point of metabolic disease, and could thus constitute a new promising therapeutic target to fight against metabolic disease.

2021 ◽  
Author(s):  
Camila Queiroz-Glauss ◽  
Mariana Vieira ◽  
Marcela Helena Gonçalves-Pereira ◽  
Stephanie Almeida ◽  
Rachel Freire ◽  
...  

Background: Epidemiological and experimental studies have shown a protective effect of helminth infections in weight gain and against the development of metabolic dysfunctions in the host. However, the mechanisms induced by the parasite that regulate the development of metabolic diseases in the host are unclear. The present study aimed to verify the influence of Heligmosomoides polygyrus infection in early stages of high fat diet-induced obesity. Principal Findings: The presence of infection was able to prevent exacerbated weight gain in mice fed with high fat diet when compared to non-infected controls. In addition, infected animals displayed improved insulin sensitivity and decreased fat accumulation in the liver. Obesity-associated inflammation was reduced in the presence of infection, demonstrated by higher levels of IL10 and adiponectin, increased infiltration of Th2 and eosinophils in adipose tissue of infected animals. Of note, the parasite infection was associated with increased Treg frequency in adipose tissue which showed higher expression of cell surface markers of function and activation, like LAP and CD134. The infection could also revert the loss of function in Tregs associated with high fat diet. Conclusion: These data suggest that H. polygyrus infection can prevent weight gain and metabolic syndrome in animals fed with high fat diet associated with modulations of adipose tissue Treg cells.


Diabetes ◽  
2011 ◽  
Vol 60 (6) ◽  
pp. 1688-1698 ◽  
Author(s):  
F. C. McGillicuddy ◽  
K. A. Harford ◽  
C. M. Reynolds ◽  
E. Oliver ◽  
M. Claessens ◽  
...  

2018 ◽  
Vol 20 (1) ◽  
pp. 26 ◽  
Author(s):  
Jin Choi ◽  
No-Joon Song ◽  
A Lee ◽  
Dong Lee ◽  
Min-Ju Seo ◽  
...  

The phytochemical oxyresveratrol has been shown to exert diverse biological activities including prevention of obesity. However, the exact reason underlying the anti-obese effects of oxyresveratrol is not fully understood. Here, we investigated the effects and mechanism of oxyresveratrol in adipocytes and high-fat diet (HFD)-fed obese mice. Oxyresveratrol suppressed lipid accumulation and expression of adipocyte markers during the adipocyte differentiation of 3T3-L1 and C3H10T1/2 cells. Administration of oxyresveratrol in HFD-fed obese mice prevented body-weight gains, lowered adipose tissue weights, improved lipid profiles, and increased glucose tolerance. The anti-obese effects were linked to increases in energy expenditure and higher rectal temperatures without affecting food intake, fecal lipid content, and physical activity. The increased energy expenditure by oxyresveratrol was concordant with the induction of thermogenic genes including Ucp1, and the reduction of white adipocyte selective genes in adipose tissue. Furthermore, Foxo3a was identified as an oxyresveratrol-induced gene and it mimicked the effects of oxyresveratrol for induction of thermogenic genes and suppression of white adipocyte selective genes, suggesting the role of Foxo3a in oxyresveratrol-mediated anti-obese effects. Taken together, these data show that oxyresveratrol increases energy expenditure through the induction of thermogenic genes in adipose tissue and further implicates oxyresveratrol as an ingredient and Foxo3a as a molecular target for the development of functional foods in obesity and metabolic diseases.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Zhengtang Qi ◽  
Jie Xia ◽  
Xiangli Xue ◽  
Xingtian Li ◽  
Zhiming Cui ◽  
...  

Objective Recent studies suggest that chronic stress exposure can ameliorate the progression of diet-induced prediabetic disease, by inhibiting an increase in weight gain, caloric intake and efficiency and insulin resistance. To determine the underlying mechanism by which chronic stress improves the progression of type 2 diabetes, we developed a model of chronic mild stress in high-fat diet(HFD)-fed mice which are resistant to obesity and exhibit a healthy-like metabolic phenotype. Methods High-fat diet (HFD): 45% kcal derived from fat (Research Diets, Inc.).Mice experienced one stressor during the day and a different stressor during the night. Stressors were randomly chosen from the following list : cage tilt on a 45° angle for 1 to 16 h; food deprivation for 12 to 16 h; white noise for 1 to 16 h; strobe light illumination for 1 to 16 h; crowded housing; light cycle (continuous illumination) for 24 to 36 h; dark cycle (continuous darkness) for 24 to 36 h; water deprivation for 12 to 16 h; damp bedding (200 ml water poured into sawdust bedding) for 12 to 16 h.Recombinant adeno-associated virus (AAV): AAV9 vectors encoding myonectin under the control of the ubiquitous CMV promoter (AAV9-CMV-Vip) or an equal dose of the AAV9-CMV-null vector were delivered to C57BL/6 mice by the tail vein. Mice were deprived of food for 16 h and then subjected to test 7 days after AAV injection. Results Chronic stress improved glucose intolerance and sympathetic overactivity in HFD-fed mice. Chronic stress attenuated epinephrine(EPI)-stimulated glycerol release into blood in vivo and accelerated glycerol release from white adipose tissue followed by in vitro incubation with EPI. Chronic stress reduced plasma triglyceride but increased the levels of plasma insulin and myonectin. We further found that adeno-associated virus 9 (AAV9)-mediated myonectin overexpression improved glucose homeostasis and reduced epinephrine sensitivity. Myonectin overexpression reduced plasma norepinephrine, EPI and leptin levels, and increased insulin sensitivity in brown and white adipose tissue. Intense sympathetic activity with high-intensity running inhibited myonectin expression in skeletal muscle, whereas medium and low-intensity exercise running increased myonectin expression. Conclusions These findings suggest that chronic mild stress can improve glucose homeostasis via myonectin-mediated suppression of sympathetic activity in high-fat diet-fed mice.


2020 ◽  
Author(s):  
Kathryn M. Spitler ◽  
Shwetha K. Shetty ◽  
Emily M. Cushing ◽  
Kelli L. Sylvers-Davie ◽  
Brandon S.J. Davies

ABSTRACTElevated plasma triglyceride levels are associated with metabolic disease. Angiopoietin-like protein 4 (ANGPTL4) regulates plasma triglyceride levels by inhibiting lipoprotein lipase (LPL). Our aim was to investigate the role of tissue-specific ANGPTL4 expression in the setting of high fat diet. Adipocyte- and hepatocyte-specific ANGPTL4 deficient mice were fed a high fat diet (60% kCal from fat) for either 12 weeks or 6 months. We performed plasma metabolic measurements, triglyceride clearance and uptake assays, LPL activity assays, and assessed glucose homeostasis. Mice lacking adipocyte ANGPTL4 recapitulated the triglyceride phenotypes of whole-body ANGPTL4 deficiency, whereas mice lacking hepatocyte ANGPTL4 had few triglyceride phenotypes. When fed a high fat diet (HFD), mice deficient in adipocyte ANGPTL4 gained more weight, had enhanced adipose LPL activity, and initially had improved glucose and insulin sensitivity. However, this improvement was largely lost after 6 months on HFD. Conversely, mice deficient in hepatocyte ANGPTL4 initially displayed no differences in glucose homeostasis, but began to manifest improved glucose tolerance after 6 months on HFD. We conclude that it is primarily adipocyte-derived ANGPTL4 that is responsible for regulating plasma triglyceride levels. Deficiency in adipocyte- or hepatocyte-derived ANGPTL4 may confer some protections against high fat diet induced dysregulation of glucose homeostasis.


2020 ◽  
Vol 319 (3) ◽  
pp. E519-E528
Author(s):  
Thomas Tsiloulis ◽  
Arthe Raajendiran ◽  
Stacey N. Keenan ◽  
Geraldine Ooi ◽  
Renea A. Taylor ◽  
...  

Regional distribution of adipose tissue is an important factor in conferring cardiometabolic risk and obesity-related morbidity. We tested the hypothesis that human visceral adipose tissue (VAT) impairs glucose homeostasis, whereas subcutaneous glutealfemoral adipose tissue (GFAT) protects against the development of impaired glucose homeostasis in mice. VAT and GFAT were collected from patients undergoing bariatric surgery and grafted onto the epididymal adipose tissue of weight- and age-matched severe, combined immunodeficient mice. SHAM mice underwent surgery without transplant of tissue. Mice were fed a high-fat diet after xenograft. Energy homeostasis, glucose metabolism, and insulin sensitivity were assessed 6 wk later. Xenograft of human adipose tissues was successful, as determined by histology, immunohistochemical evaluation of collagen deposition and angiogenesis, and maintenance of lipolytic function. Adipose tissue transplant did not affect energy expenditure, food intake, whole body substrate partitioning, or plasma free fatty acid, triglyceride, and insulin levels. Fasting blood glucose was significantly reduced in GFAT and VAT compared with SHAM, whereas glucose tolerance was improved only in mice transplanted with VAT compared with SHAM mice. This improvement was not associated with differences in whole body insulin sensitivity or plasma insulin between groups. Together, these data suggest that VAT improves glycemic control and GFAT does not protect against the development of high-fat diet-induced glucose intolerance. Hence, the intrinsic properties of VAT and GFAT do not necessarily explain the postulated negative and positive effects of these adipose tissue depots on metabolic health.


Author(s):  
Julian Roos ◽  
Meike Dahlhaus ◽  
Jan-Bernd Funcke ◽  
Monika Kustermann ◽  
Gudrun Strauss ◽  
...  

AbstractThe pathogenesis of obesity-related metabolic diseases has been linked to the inflammation of white adipose tissue (WAT), but the molecular interconnections are still not fully understood. MiR-146a controls inflammatory processes by suppressing pro-inflammatory signaling pathways. The aim of this study was to characterize the role of miR-146a in obesity and insulin resistance. MiR-146a−/− mice were subjected to a high-fat diet followed by metabolic tests and WAT transcriptomics. Gain- and loss-of-function studies were performed using human Simpson–Golabi–Behmel syndrome (SGBS) adipocytes. Compared to controls, miR-146a−/− mice gained significantly more body weight on a high-fat diet with increased fat mass and adipocyte hypertrophy. This was accompanied by exacerbated liver steatosis, insulin resistance, and glucose intolerance. Likewise, adipocytes transfected with an inhibitor of miR-146a displayed a decrease in insulin-stimulated glucose uptake, while transfecting miR-146a mimics caused the opposite effect. Natriuretic peptide receptor 3 (NPR3) was identified as a direct target gene of miR-146a in adipocytes and CRISPR/Cas9-mediated knockout of NPR3 increased insulin-stimulated glucose uptake and enhanced de novo lipogenesis. In summary, miR-146a regulates systemic and adipocyte insulin sensitivity via downregulation of NPR3.


2019 ◽  
Vol 116 (35) ◽  
pp. 17419-17428 ◽  
Author(s):  
John Eom ◽  
Jeong Jin Kim ◽  
Seul Gi Yoon ◽  
Haengdueng Jeong ◽  
Soojin Son ◽  
...  

Viperin is an interferon (IFN)-inducible multifunctional protein. Recent evidence from high-throughput analyses indicates that most IFN-inducible proteins, including viperin, are intrinsically expressed in specific tissues; however, the respective intrinsic functions are unknown. Here we show that the intrinsic expression of viperin regulates adipose tissue thermogenesis, which is known to counter metabolic disease and contribute to the febrile response to pathogen invasion. Viperin knockout mice exhibit increased heat production, resulting in a reduction of fat mass, improvement of high-fat diet (HFD)-induced glucose tolerance, and enhancement of cold tolerance. These thermogenic phenotypes are attributed to an adipocyte-autonomous mechanism that regulates fatty acid β-oxidation. Under an HFD, viperin expression is increased, and its function is enhanced. Our findings reveal the intrinsic function of viperin as a novel mechanism regulating thermogenesis in adipose tissues, suggesting that viperin represents a molecular target for thermoregulation in clinical contexts.


2016 ◽  
Vol 311 (5) ◽  
pp. E881-E890 ◽  
Author(s):  
Hiroaki Kimura ◽  
Tadayoshi Karasawa ◽  
Fumitake Usui ◽  
Akira Kawashima ◽  
Yuka Endo ◽  
...  

Caspase-1 is a cysteine protease responsible for the processing of the proinflammatory cytokine interleukin-1β and activated by the formation of inflammasome complexes. Although several investigations have found a link between diet-induced obesity and caspase-1, the relationship remains controversial. Here, we found that mice deficient in caspase-1 were susceptible to high-fat diet-induced obesity with increased adiposity as well as normal lipid and glucose metabolism. Caspase-1 deficiency clearly promoted the infiltration of inflammatory macrophages and increased the production of C-C motif chemokine ligand 2 (CCL2) in the adipose tissue. The dominant cellular source of CCL2 was stromal vascular fraction rather than adipocytes in the adipose tissue. These findings demonstrate a critical role of caspase-1 in macrophage-driven inflammation in the adipose tissue and the development of obesity. These data provide novel insights into the mechanisms underlying inflammation in the pathophysiology of obesity.


Sign in / Sign up

Export Citation Format

Share Document