scholarly journals Helminth infection modulates number and function of adipose tissue Tregs in high fat diet-induced obesity

2021 ◽  
Author(s):  
Camila Queiroz-Glauss ◽  
Mariana Vieira ◽  
Marcela Helena Gonçalves-Pereira ◽  
Stephanie Almeida ◽  
Rachel Freire ◽  
...  

Background: Epidemiological and experimental studies have shown a protective effect of helminth infections in weight gain and against the development of metabolic dysfunctions in the host. However, the mechanisms induced by the parasite that regulate the development of metabolic diseases in the host are unclear. The present study aimed to verify the influence of Heligmosomoides polygyrus infection in early stages of high fat diet-induced obesity. Principal Findings: The presence of infection was able to prevent exacerbated weight gain in mice fed with high fat diet when compared to non-infected controls. In addition, infected animals displayed improved insulin sensitivity and decreased fat accumulation in the liver. Obesity-associated inflammation was reduced in the presence of infection, demonstrated by higher levels of IL10 and adiponectin, increased infiltration of Th2 and eosinophils in adipose tissue of infected animals. Of note, the parasite infection was associated with increased Treg frequency in adipose tissue which showed higher expression of cell surface markers of function and activation, like LAP and CD134. The infection could also revert the loss of function in Tregs associated with high fat diet. Conclusion: These data suggest that H. polygyrus infection can prevent weight gain and metabolic syndrome in animals fed with high fat diet associated with modulations of adipose tissue Treg cells.

2021 ◽  
Vol 12 ◽  
Author(s):  
Monika Słupecka-Ziemilska ◽  
Paulina Grzesiak ◽  
Paweł Kowalczyk ◽  
Piotr Wychowański ◽  
Jarosław Woliński

Maternal health and diet influence metabolic status and play a crucial role in the development of metabolic function in offspring and their susceptibility to metabolic diseases in adulthood. The pathogenesis of various metabolic disorders is often associated with impairment in intestinal structure and function. Thus, the aim of the current study was to determine the effects of maternal exposure to a high fat diet (HFD), during gestation and lactation, on small intestinal growth and maturation in rat pups at 21 days old. Female, Wistar Han rats were fed either a breeding diet (BD) or high fat diet (HFD), from mating until the 21st day of lactation. Maternal HFD exposure increased body weight, BMI and adiposity. Compared to the maternal BD, HFD exposure influenced small intestine histomorphometry in a segment-dependent manner, changed the activity of brush border enzymes and had an impact on intestinal contractility via changes in cholinergic signaling. Moreover, offspring from the maternal HFD group had upregulated mRNA expression of cyclooxygenase (COX)-2, which plays a role in the inflammatory process. These results suggest that maternal HFD exposure, during gestation and lactation, programs the intestinal development of the offspring in a direction toward obesity as observed changes are also commonly reported in models of diet-induced obesity. The results also highlight the importance of maternal diet preferences in the process of developmental programming of metabolic diseases.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Elodie Luche ◽  
Virginie Robert ◽  
Vincent Cuminetti ◽  
Celine Pomié ◽  
Quentin Sastourné-Arrey ◽  
...  

Activation and increased numbers of inflammatory macrophages, in adipose tissue (AT) are deleterious in metabolic diseases. Up to now, AT macrophages (ATM) accumulation was considered to be due to blood infiltration or local proliferation, although the presence of resident hematopoietic stem/progenitor cells (Lin-/Sca+/c-Kit+; LSK phenotype) in the AT (AT-LSK) has been reported. By using transplantation of sorted AT-LSK and gain and loss of function studies we show that some of the inflammatory ATM inducing metabolic disease, originate from resident AT-LSK. Transplantation of AT-LSK sorted from high fat diet-fed (HFD) mice is sufficient to induce ATM accumulation, and to transfer metabolic disease in control mice. Conversely, the transplantation of control AT-LSK improves both AT-inflammation and glucose homeostasis in HFD mice. Our results clearly demonstrate that resident AT-LSK are one of the key point of metabolic disease, and could thus constitute a new promising therapeutic target to fight against metabolic disease.


2021 ◽  
Author(s):  
Xiao Guo ◽  
Xuedan Cao ◽  
Xiugui Fang ◽  
Ailing Guo ◽  
Erhu Li

In this study, Ougan juice (OJ) and lactic acid bacteria fermented Ougan juice (FOJ) were investigated individually for their capability of preventing obesity in high-fat diet (HFD)-fed C57BL/6J mice. After...


2021 ◽  
pp. 1-24
Author(s):  
L. Irasema Chávaro-Ortiz ◽  
Brenda D. Tapia-Vargas ◽  
Mariel Rico-Hidalgo ◽  
Ruth Gutiérrez-Aguilar ◽  
María E. Frigolet

Abstract Obesity is defined as increased adiposity, which leads to metabolic disease. The growth of adipose tissue depends on its capacity to expand, through hyperplasia or hypertrophy, in order to buffer energy surplus. Also, during the establishment of obesity, adipose tissue expansion reflects adipose lipid metabolism (lipogenesis and/or lipolysis). It is well known that dietary factors can modify lipid metabolism promoting or preventing the development of metabolic abnormalities that concur with obesity. Trans-palmitoleic acid (TP), a biomarker of dairy consumption, has been associated with reduced adiposity in clinical studies. Thus, we aimed to evaluate the effect of TP over adiposity and lipid metabolism-related genes in a rodent model of diet-induced obesity (DIO). To fulfil this aim, we fed C57BL/6 mice with a Control or a High Fat diet, added with or without TP (3g/kg diet), during 11 weeks. Body weight and food intake were monitored, fat pads were weighted, histology of visceral adipose tissue was analysed, and lipid metabolism-related gene expression was explored by qPCR. Results show that TP consumption prevented weight gain induced by high fat diet, reduced visceral adipose tissue weight, and adipocyte size, while increasing the expression of lipolytic molecules. In conclusion, we show for the first time that TP influences adipose tissue metabolism, specifically lipolysis, resulting in decreased adiposity and reduced adipocyte size in a DIO mice model.


2021 ◽  
Vol 22 (10) ◽  
pp. 5390
Author(s):  
Qianhui Zeng ◽  
Nannan Wang ◽  
Yaru Zhang ◽  
Yuxuan Yang ◽  
Shuangshuang Li ◽  
...  

Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.


2011 ◽  
Vol 108 (6) ◽  
pp. 1025-1033 ◽  
Author(s):  
Sumithra Urs ◽  
Terry Henderson ◽  
Phuong Le ◽  
Clifford J. Rosen ◽  
Lucy Liaw

We recently characterised Sprouty1 (Spry1), a growth factor signalling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue-specific Spry1 expression in mice resulted in increased bone mass and reduced body fat, while conditional knockout of Spry1 had the opposite effect with decreased bone mass and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high-fat diet-induced obesity, bone loss and associated lipid abnormalities, and demonstrate that Spry1 has a long-term protective effect on mice fed a high-energy diet. We studied diet-induced obesity in mice with fatty acid binding promoter-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole-body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1-null mice, a high-fat diet increased body fat by 40 %, impaired glucose regulation and led to liver steatosis. However, overexpression of Spry1 led to 35 % (P < 0·05) lower body fat, reduced bone loss and normal metabolic function compared with single transgenics. This protective phenotype was associated with decreased circulating insulin (70 %) and leptin (54 %; P < 0·005) compared with controls on a high-fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45 %. We show that conditional Spry1 expression in adipose tissue protects against high-fat diet-induced obesity and associated bone loss.


Diabetes ◽  
2014 ◽  
Vol 63 (11) ◽  
pp. 3615-3625 ◽  
Author(s):  
Hee-Jin Jun ◽  
Yagini Joshi ◽  
Yuvraj Patil ◽  
Robert C. Noland ◽  
Ji Suk Chang

2021 ◽  
Author(s):  
Zhen Shi ◽  
Zhiyuan Fang ◽  
Xinxing Gao ◽  
Hao Yu ◽  
Yiwei Zhu ◽  
...  

Nuciferine (NF) has received extensive attention for its medicinal value in the treatment of metabolic diseases, such as obesity, but the effects of NF on obesity-related intestinal permeability, autophagy and...


Sign in / Sign up

Export Citation Format

Share Document