scholarly journals Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Kerstin Seidel ◽  
Pauline Marangoni ◽  
Cynthia Tang ◽  
Bahar Houshmand ◽  
Wen Du ◽  
...  

Investigations into stem cell-fueled renewal of an organ benefit from an inventory of cell type-specific markers and a deep understanding of the cellular diversity within stem cell niches. Using the adult mouse incisor as a model for a continuously renewing organ, we performed an unbiased analysis of gene co-expression relationships to identify modules of co-expressed genes that represent differentiated cells, transit-amplifying cells, and residents of stem cell niches. Through in vivo lineage tracing, we demonstrated the power of this approach by showing that co-expression module members Lrig1 and Igfbp5 define populations of incisor epithelial and mesenchymal stem cells. We further discovered that two adjacent mesenchymal tissues, the periodontium and dental pulp, are maintained by distinct pools of stem cells. These findings reveal novel mechanisms of incisor renewal and illustrate how gene co-expression analysis of intact biological systems can provide insights into the transcriptional basis of cellular identity.

MRS Bulletin ◽  
2010 ◽  
Vol 35 (8) ◽  
pp. 591-596 ◽  
Author(s):  
Ana I. Teixeira ◽  
Ola Hermanson ◽  
Carsten Werner

AbstractStem cells have received a lot of attention due to great promises in medical treatment, for example, by replacing lost and sick cells and re-constituting cell populations. There are several classes of stem cells, including embryonic, fetal, and adult tissue specific. More recently, the generation of so-called induced pluripotent stem (iPS) cells from differentiated cells has been established. Common criteria for all types of stem cells include their ability to self-renew and to retain their ability to differentiate in response to specific cues. These characteristics, as well as the instructive steering of the cells into differentiation, are largely dependent on the microenvironment surrounding the cells. Such “stem cell friendly” microenvironments, provided by structural and biochemical components, are often referred to as niches. Biomaterials offer attractive solutions to engineer functional stem cell niches and to steer stem cell state and fatein vitroas well asin vivo. Among materials used so far, promising results have been achieved with low-toxicity and biodegradable polymers, such as polyglycolic acid and related materials, as well as other polymers used as structural “scaffolds” for engineering of extracellular matrix components. To improve the efficiency of stem cell control and the design of the biomaterials, interfaces among stem cell research, developmental biology, regenerative medicine, chemical engineering, and materials research are rapidly developing. Here we provide an introduction to stem cell biology and principles of niche engineering and give an overview of recent advancements in stem cell niche engineering from two stem cell systems—blood and brain.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Geru Zhang ◽  
Qiwen Li ◽  
Quan Yuan ◽  
Shiwen Zhang

Stem cells play an irreplaceable role in the development, homeostasis, and regeneration of the craniofacial bone. Multiple populations of tissue-resident craniofacial skeletal stem cells have been identified in different stem cell niches, including the cranial periosteum, jawbone marrow, temporomandibular joint, cranial sutures, and periodontium. These cells exhibit self-renewal and multidirectional differentiation abilities. Here, we summarized the properties of craniofacial skeletal stem cells, based on their spatial distribution. Specifically, we focused on the in vivo genetic fate mapping of stem cells, by exploring specific stem cell markers and observing their lineage commitment in both the homeostatic and regenerative states. Finally, we discussed their application in regenerative medicine.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Ricardo Antonio Rosselló ◽  
Chun-Chun Chen ◽  
Rui Dai ◽  
Jason T Howard ◽  
Ute Hochgeschwender ◽  
...  

Cells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range.


2011 ◽  
Vol 63 (5) ◽  
pp. 1289-1300 ◽  
Author(s):  
Tobias B. Kurth ◽  
Francesco Dell'Accio ◽  
Vicki Crouch ◽  
Andrea Augello ◽  
Paul T. Sharpe ◽  
...  

2008 ◽  
Vol 3 (3) ◽  
pp. 365-376 ◽  
Author(s):  
Sean C Bendall ◽  
Morag H Stewart ◽  
Mickie Bhatia

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Tackla S. Winston ◽  
Kantaphon Suddhapas ◽  
Chenyan Wang ◽  
Rafael Ramos ◽  
Pranav Soman ◽  
...  

Combination of stem cell technology and 3D biofabrication approaches provides physiological similarity to in vivo tissues and the capability of repairing and regenerating damaged human tissues. Mesenchymal stem cells (MSCs) have been widely used for regenerative medicine applications because of their immunosuppressive properties and multipotent potentials. To obtain large amount of high-quality MSCs without patient donation and invasive procedures, we differentiated MSCs from human-induced pluripotent stem cells (hiPSC-MSCs) using serum-free E6 media supplemented with only one growth factor (bFGF) and two small molecules (SB431542 and CHIR99021). The differentiated cells showed a high expression of common MSC-specific surface markers (CD90, CD73, CD105, CD106, CD146, and CD166) and a high potency for osteogenic and chondrogenic differentiation. With these cells, we have been able to manufacture MSC tissue rings with high consistency and robustness in pluronic-coated reusable PDMS devices. The MSC tissue rings were characterized based on inner diameter and outer ring diameter and observed cell-type-dependent tissue contraction induced by cell-matrix interaction. Our approach of simplified hiPSC-MSC differentiation, modular fabrication procedure, and serum-free culture conditions has a great potential for scalable manufacturing of MSC tissue rings for different regenerative medicine applications.


2020 ◽  
Vol 117 (30) ◽  
pp. 17796-17807 ◽  
Author(s):  
Toru Hiratsuka ◽  
Ignacio Bordeu ◽  
Gunnar Pruessner ◽  
Fiona M. Watt

Fluctuation in signal transduction pathways is frequently observed during mammalian development. However, its role in regulating stem cells has not been explored. Here we tracked spatiotemporal ERK MAPK dynamics in human epidermal stem cells. While stem cells and differentiated cells were distinguished by high and low stable basal ERK activity, respectively, we also found cells with pulsatile ERK activity. Transitions from Basalhi-Pulselo(stem) to Basalhi-Pulsehi, Basalmid-Pulsehi, and Basallo-Pulselo(differentiated) cells occurred in expanding keratinocyte colonies and in response to differentiation stimuli. Pharmacological inhibition of ERK induced differentiation only when cells were in the Basalmid-Pulsehistate. Basal ERK activity and pulses were differentially regulated by DUSP10 and DUSP6, leading us to speculate that DUSP6-mediated ERK pulse down-regulation promotes initiation of differentiation, whereas DUSP10-mediated down-regulation of mean ERK activity promotes and stabilizes postcommitment differentiation. Levels of MAPK1/MAPK3 transcripts correlated with DUSP6 and DUSP10 transcripts in individual cells, suggesting that ERK activity is negatively regulated by transcriptional and posttranslational mechanisms. When cells were cultured on a topography that mimics the epidermal−dermal interface, spatial segregation of mean ERK activity and pulses was observed. In vivo imaging of mouse epidermis revealed a patterned distribution of basal cells with pulsatile ERK activity, and down-regulation was linked to the onset of differentiation. Our findings demonstrate that ERK MAPK signal fluctuations link kinase activity to stem cell dynamics.


2016 ◽  
Vol 113 (11) ◽  
pp. E1498-E1505 ◽  
Author(s):  
Xinhong Lim ◽  
Si Hui Tan ◽  
Ka Lou Yu ◽  
Sophia Beng Hui Lim ◽  
Roeland Nusse

How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation.


2020 ◽  
Vol 22 (1) ◽  
pp. 357
Author(s):  
Ken Kurokawa ◽  
Yoku Hayakawa ◽  
Kazuhiko Koike

The discovery of Lgr5+ intestinal stem cells (ISCs) triggered a breakthrough in the field of ISC research. Lgr5+ ISCs maintain the homeostasis of the intestinal epithelium in the steady state, while these cells are susceptible to epithelial damage induced by chemicals, pathogens, or irradiation. During the regeneration process of the intestinal epithelium, more quiescent +4 stem cells and short-lived transit-amplifying (TA) progenitor cells residing above Lgr5+ ISCs undergo dedifferentiation and act as stem-like cells. In addition, several recent reports have shown that a subset of terminally differentiated cells, including Paneth cells, tuft cells, or enteroendocrine cells, may also have some degree of plasticity in specific situations. The function of ISCs is maintained by the neighboring stem cell niches, which strictly regulate the key signal pathways in ISCs. In addition, various inflammatory cytokines play critical roles in intestinal regeneration and stem cell functions following epithelial injury. Here, we summarize the current understanding of ISCs and their niches, review recent findings regarding cellular plasticity and its regulatory mechanism, and discuss how inflammatory cytokines contribute to epithelial regeneration.


Sign in / Sign up

Export Citation Format

Share Document