scholarly journals Analysis of the NK2 homeobox gene ceh-24 reveals sublateral motor neuron control of left-right turning during sleep

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Juliane Schwarz ◽  
Henrik Bringmann

Sleep is a behavior that is found in all animals that have a nervous system and that have been studied carefully. In Caenorhabditis elegans larvae, sleep is associated with a turning behavior, called flipping, in which animals rotate 180° about their longitudinal axis. However, the molecular and neural substrates of this enigmatic behavior are not known. Here, we identified the conserved NK-2 homeobox gene ceh-24 to be crucially required for flipping. ceh-24 is required for the formation of processes and for cholinergic function of sublateral motor neurons, which separately innervate the four body muscle quadrants. Knockdown of cholinergic function in a subset of these sublateral neurons, the SIAs, abolishes flipping. The SIAs depolarize during flipping and their optogenetic activation induces flipping in a fraction of events. Thus, we identified the sublateral SIA neurons to control the three-dimensional movements of flipping. These neurons may also control other types of motion.

2021 ◽  
Author(s):  
Callista Stephanie Yee

During the development of the nervous system, the migration of many cells and axons is guided by extracellular molecules. These molecules bind to receptors at the tips of the growth cones of migrating axons and trigger intracellular signalling to steer the axons along the correct trajectories. Previous work has identified a novel mutant, enu-3 (enhancer of Unc), that enhances the motor neuron axon outgrowth defects observed in strains of Caenorhabditis elegans that lack either the UNC-5 receptor or its ligand UNC-6/Netrin, enu-3 single mutants have weak motor neuron axon migration defects. Both outgrowth defects of double mutants and axon migration defects of enu-3 mutants were rescued by expression of the H04D03.1 gene product. Enu-3/H04D03.1 encodes a novel predicted putative trans-membrane protein of 204 amino acids. ENU-3 is expressed weakly expressed in many cell bodies along the ventral cord, including those of the DA and DB motor neurons.


2021 ◽  
Author(s):  
Callista Stephanie Yee

During the development of the nervous system, the migration of many cells and axons is guided by extracellular molecules. These molecules bind to receptors at the tips of the growth cones of migrating axons and trigger intracellular signalling to steer the axons along the correct trajectories. Previous work has identified a novel mutant, enu-3 (enhancer of Unc), that enhances the motor neuron axon outgrowth defects observed in strains of Caenorhabditis elegans that lack either the UNC-5 receptor or its ligand UNC-6/Netrin, enu-3 single mutants have weak motor neuron axon migration defects. Both outgrowth defects of double mutants and axon migration defects of enu-3 mutants were rescued by expression of the H04D03.1 gene product. Enu-3/H04D03.1 encodes a novel predicted putative trans-membrane protein of 204 amino acids. ENU-3 is expressed weakly expressed in many cell bodies along the ventral cord, including those of the DA and DB motor neurons.


2018 ◽  
Author(s):  
Mohsen Afshar Bakooshli ◽  
Ethan S Lippmann ◽  
Ben Mulcahy ◽  
Nisha R Iyer ◽  
Christine T Nguyen ◽  
...  

SummaryTwo-dimensional (2D) human skeletal muscle fiber cultures are ill equipped to support the contractile properties of maturing muscle fibers. This limits their application to the study of adult human neuromuscular junction (NMJ) development, a process requiring maturation of muscle fibers in the presence of motor neuron endplates. Here we describe a three-dimensional (3D) co-culture method whereby human muscle progenitors mixed with human pluripotent stem cell-derived motor neurons self-organize to form functional NMJ connections within two weeks. Functional connectivity between motor neuron endplates and muscle fibers is confirmed with calcium transient imaging and electrophysiological recordings. Notably, we only observed epsilon acetylcholine receptor subunit protein upregulation and activity in 3D co-culture. This demonstrates that the 3D co-culture system supports a developmental shift from the embryonic to adult form of the receptor that does not occur in 2D co-culture. Further, 3D co-culture treatments with myasthenia gravis patient sera shows the ease of studying human disease with the system. This work delivers a simple, reproducible, and adaptable method to model and evaluate adult human NMJ de novo development and disease in culture.


Genetics ◽  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Kenneth Pham ◽  
Neda Masoudi ◽  
Eduardo Leyva-Díaz ◽  
Oliver Hobert

Abstract We describe here phase-separated subnuclear organelles in the nematode Caenorhabditis elegans, which we term NUN (NUclear Nervous system-specific) bodies. Unlike other previously described subnuclear organelles, NUN bodies are highly cell type specific. In fully mature animals, 4–10 NUN bodies are observed exclusively in the nucleus of neuronal, glial and neuron-like cells, but not in other somatic cell types. Based on co-localization and genetic loss of function studies, NUN bodies are not related to other previously described subnuclear organelles, such as nucleoli, splicing speckles, paraspeckles, Polycomb bodies, promyelocytic leukemia bodies, gems, stress-induced nuclear bodies, or clastosomes. NUN bodies form immediately after cell cycle exit, before other signs of overt neuronal differentiation and are unaffected by the genetic elimination of transcription factors that control many other aspects of neuronal identity. In one unusual neuron class, the canal-associated neurons, NUN bodies remodel during larval development, and this remodeling depends on the Prd-type homeobox gene ceh-10. In conclusion, we have characterized here a novel subnuclear organelle whose cell type specificity poses the intriguing question of what biochemical process in the nucleus makes all nervous system-associated cells different from cells outside the nervous system.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Tai-Heng Chen ◽  
Jun-An Chen

Two crucial questions in neuroscience are how neurons establish individual identity in the developing nervous system and why only specific neuron subtypes are vulnerable to neurodegenerative diseases. In the central nervous system, spinal motor neurons serve as one of the best-characterized cell types for addressing these two questions. In this review, we dissect these questions by evaluating the emerging role of regulatory microRNAs in motor neuron generation in developing embryos and their potential contributions to neurodegenerative diseases such as spinal muscular atrophy (SMA). Given recent promising results from novel microRNA-based medicines, we discuss the potential applications of microRNAs for clinical assessments of SMA disease progression and treatment.


1979 ◽  
Vol 57 (3) ◽  
pp. 329-332 ◽  
Author(s):  
Peter Ruben ◽  
Ken Lukowiak

We have studied the effects of dopamine on the gill withdrawal reflex evoked by tactile siphon stimulation in the margine mollusc Aplysia. Physiological concentrations of dopamine (diluted in seawater) were perfused through the gill during siphon stimulation series. The amplitude of the reflex was potentiated by dopamine and habituation of the reflex was prevented. This occurred with no change in the activity evoked in central motor neurons. These results lead us to conclude that the dopaminergic motor neuron L9 is modulating habituation in the periphery and that the central nervous system facilitatory control of the peripheral nervous system may act via a dopaminergic pathway.


2005 ◽  
Vol 93 (3) ◽  
pp. 1523-1556 ◽  
Author(s):  
Vladimir Brezina ◽  
Charles C. Horn ◽  
Klaudiusz R. Weiss

Recent work in computational neuroethology has emphasized that “the brain has a body”: successful adaptive behavior is not simply commanded by the nervous system, but emerges from interactions of nervous system, body, and environment. Here we continue our study of these issues in the accessory radula closer (ARC) neuromuscular system of Aplysia. The ARC muscle participates in the animal's feeding behaviors, a set of cyclical, rhythmic behaviors driven by a central pattern generator (CPG). Patterned firing of the ARC muscle's two motor neurons, B15 and B16, releases not only ACh to elicit the muscle's contractions but also peptide neuromodulators that then shape the contractions through a complex network of actions on the muscle. These actions are dynamically complex: some are fast, but some are slow, so that they are temporally uncoupled from the motor neuron firing pattern in the current cycle. Under these circumstances, how can the nervous system, through just the narrow channel of the firing patterns of the motor neurons, control the contractions, movements, and behavior in the periphery? In two earlier papers, we developed a realistic mathematical model of the B15/B16-ARC neuromuscular system and its modulation. Here we use this model to study the functional performance of the system in a realistic behavioral task. We run the model with two kinds of inputs: a simple set of regular motor neuron firing patterns that allows us to examine the entire space of patterns, and the real firing patterns of B15 and B16 previously recorded in a 21/2-h-long meal of 749 cycles in an intact feeding animal. These real patterns are extremely irregular. Our main conclusions are the following. 1) The modulation in the periphery is necessary for superior functional performance. 2) The components of the modulatory network interact in nonlinear, context- and task-dependent combinations for best performance overall, although not necessarily in any particular cycle. 3) Both the fast and the slow dynamics of the modulatory state make important contributions. 4) The nervous system controls different components of the periphery to different degrees. To some extent the periphery operates semiautonomously. However, the structure of the peripheral modulatory network ensures robust performance under all circumstances, even with the irregular motor neuron firing patterns and even when the parameters of the functional task are randomly varied from cycle to cycle to simulate a variable feeding environment. In the variable environment, regular firing patterns, which are fine-tuned to one particular task, fail to provide robust performance. We propose that the CPG generates the irregular firing patterns, which nevertheless are guaranteed to give robust performance overall through the actions of the peripheral modulatory network, as part of a trial-and-error feeding strategy in a variable, uncertain environment.


1993 ◽  
Vol 175 (1) ◽  
pp. 283-297 ◽  
Author(s):  
L. Avery

1. Previous work has shown that 12 of the 14 types of neurons in the Caenorhabditis elegans pharyngeal nervous system are collectively but not individually necessary for the trapping and transport of bacteria. The aim of these experiments was to determine the functions of individual neuron types by laser-killing combinations of neurons and looking at the effects on behavior. 2. The motor neuron M3 and the sensory neuron I5 are important in trapping bacteria, as shown by two observations. First, when M3 and I5 are both killed, trapping is inefficient in the isthmus (the middle section of the pharynx). Second, M3 is sufficient in the absence of the other 11 neuron types for normal trapping in the corpus (anterior pharynx). 3. M3 and I5 influence the timing of pharyngeal muscle motions. When M3 is killed, pump duration (the interval from the beginning of pharyngeal contraction to the end of relaxation) increases from 170 to 196 ms. This increase is at least partially due to a slower relaxation. Thus, M3 speeds up relaxation. Pump duration decreases to 159 ms when I5 is killed. When I5 and M3 are both killed, pump durations are long (192 ms), just as when M3 alone is killed. These observations, together with previous electron microscopic work showing synapses from I5 to M3, suggest that I5 slows down relaxation by inhibiting M3. 4. To explain these results, I propose that M3 and I5 promote bacterial trapping by regulating the relative timing of muscle relaxation in different regions of the pharynx.


2019 ◽  
Author(s):  
Kritika S. Katiyar ◽  
Laura A. Struzyna ◽  
Suradip Das ◽  
D. Kacy Cullen

AbstractThe central feature of peripheral motor axons is their remarkable lengths as they project from a motor neuron residing in the spinal cord to an often-distant target muscle. However, to date in vitro models have not replicated this central feature owing to challenges in generating motor axon tracts beyond a few millimeters in length. To address this, we have developed a novel combination of micro-tissue engineering and mechanically assisted growth techniques to create long-projecting centimeter-scale motor axon tracts. Here, primary motor neurons were isolated from the spinal cords of rats and induced to form engineered micro-spheres via forced aggregation in custom micro-wells. This three-dimensional micro-tissue yielded healthy motor neurons projecting dense, fasciculated axonal tracts. Within our custom-built mechanobioreactors, motor neuron culture conditions, neuronal/axonal architecture, and mechanical growth conditions were systematically optimized to generate parameters for robust and efficient “stretch-growth” of motor axons. We found that axons projecting from motor neuron aggregates were able to respond to axon displacement rates at least 10 times greater than that tolerated by axons projecting from dissociated motor neurons. The growth and structural characteristics of these stretch-grown motor axons were compared to benchmark stretch-grown axons from sensory dorsal root ganglion neurons, revealing similar axon densities yet increased motor axon fasciculation. Finally, motor axons were integrated with myocytes and then stretch-grown to create novel long-projecting axonal-myocyte constructs that better recreate characteristic dimensions of native nerve-muscle anatomy. This is the first demonstration of mechanical elongation of spinal cord motor axons and may have applications as anatomically inspired in vitro testbeds or as tissue engineered “living scaffolds” for targeted axon tract reconstruction following nervous system injury or disease.Significance StatementWe have developed novel axon tracts of unprecedented lengths spanning either two discrete populations of neurons or a population of neurons and skeletal myocytes. This is the first demonstration of “stretch-grown” motor axons that recapitulate the structure of spinal motor neurons in vivo by projecting long axons from a pool of motor neurons to distant targets, and may have applications as anatomically inspired in vitro test beds to study mechanisms of axon growth, development, and neuromuscular function in anatomically accurate axo-myo constructs; as well as serve as “living scaffolds” in vivo for targeted axon tract reconstruction following nervous system trauma.


2019 ◽  
Vol 7 (3) ◽  
pp. 17 ◽  
Author(s):  
Devyn Oliver ◽  
Emily Norman ◽  
Heather Bates ◽  
Rachel Avard ◽  
Monika Rettler ◽  
...  

Formation of the nervous system requires a complex series of events including proper extension and guidance of neuronal axons and dendrites. Here we investigate the requirement for integrins, a class of transmembrane cell adhesion receptors, in regulating these processes across classes of C. elegans motor neurons. We show α integrin/ina-1 is expressed by both GABAergic and cholinergic motor neurons. Despite this, our analysis of hypomorphic ina-1(gm144) mutants indicates preferential involvement of α integrin/ina-1 in GABAergic commissural development, without obvious involvement in cholinergic commissural development. The defects in GABAergic commissures of ina-1(gm144) mutants included both premature termination and guidance errors and were reversed by expression of wild type ina-1 under control of the native ina-1 promoter. Our results also show that α integrin/ina-1 is important for proper outgrowth and guidance of commissures from both embryonic and post-embryonic born GABAergic motor neurons, indicating an ongoing requirement for integrin through two phases of GABAergic neuron development. Our findings provide insights into neuron-specific roles for integrin that would not be predicted based solely upon expression analysis.


Sign in / Sign up

Export Citation Format

Share Document