scholarly journals Revised roles of ISL1 in a hES cell-based model of human heart chamber specification

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Roberto Quaranta ◽  
Jakob Fell ◽  
Frank Rühle ◽  
Jyoti Rao ◽  
Ilaria Piccini ◽  
...  

The transcription factor ISL1 is thought to be key for conveying the multipotent and proliferative properties of cardiac precursor cells. Here, we investigate its function upon cardiac induction of human embryonic stem cells. We find that ISL1 does not stabilize the transient cardiac precursor cell state but rather serves to accelerate cardiomyocyte differentiation. Conversely, ISL1 depletion delays cardiac differentiation and respecifies nascent cardiomyocytes from a ventricular to an atrial identity. Mechanistic analyses integrate this unrecognized anti-atrial function of ISL1 with known and newly identified atrial inducers. In this revised view, ISL1 is antagonized by retinoic acid signaling via a novel player, MEIS2. Conversely, ISL1 competes with the retinoic acid pathway for prospective cardiomyocyte fate, which converges on the atrial specifier NR2F1. This study reveals a core regulatory network putatively controlling human heart chamber formation and also bears implications for the subtype-specific production of human cardiomyocytes with enhanced functional properties.

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Shumei Miao ◽  
Xing Fang ◽  
Xiaoxiao Wang ◽  
Lingqun Ye ◽  
Jingsi Yang ◽  
...  

Cardiomyocytes differentiated from human embryonic stem cells (hESCs) represent a promising cell source for heart repair, disease modeling and drug testing. However, improving the differentiation efficiency and maturation of hESC-derived cardiomyocytes (hESC-CMs) is still a major concern. Retinoic acid (RA) signaling plays multiple roles in heart development, and studies on RA can provide clues for understanding cardiomyocyte differentiation and maturation. In this study, we studied the roles of RA during cardiomyocyte differentiation and maturation, systematically. After adding RA at different stages of cardiomyocyte differentiation, we compared the efficiency of differentiation by quantitative real-time PCR and flow cytometry. We found that RA treatment at the lateral mesoderm stage (days 2-4) significantly improved cardiomyocyte differentiation, as evidenced by the upregulation of TNNT2, NKX2.5 and MYH6 on day 10 of differentiation. In addition, flow cytometry showed that the proportion of differentiated cardiomyocytes in the RA-treated group was significantly higher than that in control group. Furthermore, RA was added at different time intervals after purification to induce cardiomyocyte maturation. Our results demonstrated that RA treatment on days 15-20 increased cardiomyocyte area, sarcomere length, multinucleation and mitochondrial copy number, and promoted RNA splicing switch. Importantly, RA-treated cardiomyocytes showed decreased glycolysis and enhanced mitochondrial oxidative phosphorylation, with the increased utilization of fatty acid and exogenous pyruvate but not glutamine. In conclusion, our data indicated that RA treatment at an early time window (days 2-4) promotes the efficiency of cardiomyocyte differentiation and that RA treatment post beating (days 15-20) promotes cardiomyocyte metabolic maturation. The biphasic effects of RA provide new insights for improving cardiomyocyte differentiation and quality.


1997 ◽  
Vol 29 (6) ◽  
pp. 1525-1539 ◽  
Author(s):  
Anna M. Wobus ◽  
Guan Kaomei ◽  
Jin Shan ◽  
Marie-Cecile Wellner ◽  
Jürgen Rohwedel ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 201-201
Author(s):  
Jill L. de Jong ◽  
Alan J. Davidson ◽  
Yuan Wang ◽  
James Palis ◽  
George Q. Daley ◽  
...  

Abstract Retinoic acid signaling is critical for proper development, as well as the regulation of hematopoiesis in murine and human cells. It has been reported that retinoic acid expands definitive hematopoietic stem cells and confers an advantage in transplantation of murine HSCs. We demonstrate here that all trans retinoic acid (ATRA) blocks early hematopoiesis in zebrafish embryos as measured by decreased expression of scl and gata1. This loss of gata1 expression after exposure to ATRA is reminiscent of the lack of gata1 expression in cdx4 mutant zebrafish embryos, prompting the hypothesis that retinoic acid and cdx4 share a common signaling pathway regulating the emergence of the hematopoietic system, and that inhibition of ATRA might rescue blood development in cdx4 mutants. We tested 4-diethylamino benzaldehyde (DEAB), an inhibitor of retinoic acid biosynthesis, and AGN193109, a pan-RAR antagonist, for their ability to rescue gata1 expression in cdx4 mutant embryos. We found that treatment with either DEAB or AGN193109 results in increased gata1 expression in the posterior mesoderm of both cdx4 mutants and wild type zebrafish embryos. This rescue of gata1 expression in the cdx4 mutants is observed only when the DEAB treatment occurs during late gastrulation. Mutant embryos exposed to DEAB only during early gastrulation or somitogenesis did not have increased gata1 expression. While this observation may reflect the complex activity of ATRA in both hematopoiesis and in mesodermal patterning, we conclude that it is also consistent with a switch to the stimulatory effect of retinoic acid on hematopoiesis observed by others in adult mice. Similarly, DEAB treatment increased primitive erythroid cells in murine hematopoietic cultures. We show that E7.5 murine yolk sac explant cultures exposed to DEAB have increased primitive erythroid colony forming cells (EryP-CFC) and definitive erythroid burst forming units (BFU-E). In contrast, ATRA markedly inhibits all erythroid colony formation in murine yolk sac explants. Likewise, murine embryonic stem cells treated with DEAB during embryoid body development have an 8-fold expansion of EryP-CFC, and a 2-fold expansion of multipotent GEMM colonies. Previously we published that overexpression of hoxA9 mRNA rescues gata1 expression in cdx4 mutant embryos. However, the hematopoietic defect in cdx4 mutant embryos is not rescued by overexpression of scl. To test the hypothesis that hoxA9 and scl are both signaling downstream of retinoic acid in the stimulation of primitive erythroid development, we overexpressed hoxA9 or scl by microinjecting mRNA into single-cell wild type zebrafish embryos followed by treatment with ATRA. We find that overexpression of either hoxA9 or scl partially rescues the block of hematopoiesis induced by ATRA. Taken together, these data indicate that the commitment of mesodermal cells to hematopoietic fates is inhibited by retinoic acid, and that the retinoic acid signal is acting downstream of cdx4 in the zebrafish embryo, while scl and hoxA9 are acting downstream of retinoic acid signaling.


2018 ◽  
Vol 10 (452) ◽  
pp. eaar4338 ◽  
Author(s):  
Zhenjie Zhang ◽  
Samuele G. Marro ◽  
Yingsha Zhang ◽  
Kristin L. Arendt ◽  
Christopher Patzke ◽  
...  

Fragile X syndrome (FXS) is an X chromosome–linked disease leading to severe intellectual disabilities. FXS is caused by inactivation of the fragile X mental retardation 1 (FMR1) gene, but howFMR1inactivation induces FXS remains unclear. Using human neurons generated from control and FXS patient-derived induced pluripotent stem (iPS) cells or from embryonic stem cells carrying conditionalFMR1mutations, we show here that loss ofFMR1function specifically abolished homeostatic synaptic plasticity without affecting basal synaptic transmission. We demonstrated that, in human neurons, homeostatic plasticity induced by synaptic silencing was mediated by retinoic acid, which regulated both excitatory and inhibitory synaptic strength.FMR1inactivation impaired homeostatic plasticity by blocking retinoic acid–mediated regulation of synaptic strength. Repairing the genetic mutation in theFMR1gene in an FXS patient cell line restored fragile X mental retardation protein (FMRP) expression and fully rescued synaptic retinoic acid signaling. Thus, our study reveals a robust functional impairment caused byFMR1mutations that might contribute to neuronal dysfunction in FXS. In addition, our results suggest that FXS patient iPS cell–derived neurons might be useful for studying the mechanisms mediating functional abnormalities in FXS.


2021 ◽  
Vol 22 (13) ◽  
pp. 7015
Author(s):  
Ji-Hye Jang ◽  
Min-Seong Kim ◽  
Ainsley Mike Antao ◽  
Won-Jun Jo ◽  
Hyung-Joon Kim ◽  
...  

Adult human cardiomyocytes have an extremely limited proliferative capacity, which poses a great barrier to regenerative medicine and research. Human embryonic stem cells (hESCs) have been proposed as an alternative source to generate large numbers of clinical grade cardiomyocytes (CMs) that can have potential therapeutic applications to treat cardiac diseases. Previous studies have shown that bioactive lipids are involved in diverse cellular responses including cardiogenesis. In this study, we explored the novel function of the chemically synthesized bioactive lipid O-cyclic phytosphingosine-1-phosphate (cP1P) as an inducer of cardiac differentiation. Here, we identified cP1P as a novel factor that significantly enhances the differentiation potential of hESCs into cardiomyocytes. Treatment with cP1P augments the beating colony number and contracting area of CMs. Furthermore, we elucidated the molecular mechanism of cP1P regulating SMAD1/5/8 signaling via the ALK3/BMP receptor cascade during cardiac differentiation. Our result provides a new insight for cP1P usage to improve the quality of CM differentiation for regenerative therapies.


Sign in / Sign up

Export Citation Format

Share Document