genomic effects
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 26)

H-INDEX

35
(FIVE YEARS 3)

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4227
Author(s):  
Simone Donati ◽  
Gaia Palmini ◽  
Cecilia Romagnoli ◽  
Cinzia Aurilia ◽  
Francesca Miglietta ◽  
...  

Several recent studies have demonstrated that the direct precursor of vitamin D3, the calcifediol [25(OH)D3], through the binding to the nuclear vitamin D receptor (VDR), is able to regulate the expression of many genes involved in several cellular processes. Considering that itself may function as a VDR ligand, although with a lower affinity, respect than the active form of vitamin D, we have assumed that 25(OH)D3 by binding the VDR could have a vitamin’s D3 activity such as activating non-genomic pathways, and in particular we selected mesenchymal stem cells derived from human adipose tissue (hADMSCs) for the in vitro assessment of the intracellular Ca2+ mobilization in response to 25(OH)D3. Our result reveals the ability of 25(OH)D3 to activate rapid, non-genomic pathways, such as an increase of intracellular Ca2+ levels, similar to what observed with the biologically active form of vitamin D3. hADMSCs loaded with Fluo-4 AM exhibited a rapid and sustained increase in intracellular Ca2+ concentration as a result of exposure to 10−5 M of 25(OH)D3. In this work, we show for the first time the in vitro ability of 25(OH)D3 to induce a rapid increase of intracellular Ca2+ levels in hADMSCs. These findings represent an important step to better understand the non-genomic effects of vitamin D3 and its role in endocrine system.


2021 ◽  
Vol 17 (3) ◽  
pp. 256-260
Author(s):  
Agnieszka Rustecka ◽  
Maria Węgrzynek ◽  
Agata Tomaszewska ◽  
Bolesław Kalicki

Food allergy is a growing health problem, which is particularly common among the youngest children. Anaphylaxis, which is defined as a sudden-onset and potentially fatal response to an allergen, is an indication for urgent treatment. Although intramuscular epinephrine is the treatment of choice, all therapeutic algorithms also recommend glucocorticoids. They play an important role in reducing the risk of late allergic reaction, and, due to their non-genomic effects, are also increasingly often mentioned in the context of early response to shock. This effect is directly proportional to the dose of the drug, and a reduced duration of the symptoms of anaphylactic shock is achieved with the use of high doses of glucocorticoids. The paper presents a case of a 3-month-old girl with an anaphylactic reaction after consuming a modified milk preparation. After systemic administration of glucocorticoids, a satisfactory therapeutic effect was observed in the child.


Author(s):  
Soma Godó ◽  
Klaudia Barabás ◽  
Ferenc Lengyel ◽  
Dávid Ernszt ◽  
Tamás Kovács ◽  
...  

Gonadal steroid 17β-estradiol (E2) exerts rapid, non-genomic effects on neurons and strictly regulates learning and memory through altering glutamatergic neurotransmission and synaptic plasticity. However, its non-genomic effects on AMPARs are not well understood. Here, we analyzed the rapid effect of E2 on AMPARs using single-molecule tracking and super-resolution imaging techniques. We found that E2 rapidly decreased the surface movement of AMPAR via membrane G protein-coupled estrogen receptor 1 (GPER1) in neurites in a dose-dependent manner. The cortical actin network played a pivotal role in the GPER1 mediated effects of E2 on the surface mobility of AMPAR. E2 also decreased the surface movement of AMPAR both in synaptic and extrasynaptic regions on neurites and increased the synaptic dwell time of AMPARs. Our results provide evidence for understanding E2 action on neuronal plasticity and glutamatergic neurotransmission at the molecular level.


2021 ◽  
Vol 22 (16) ◽  
pp. 8503
Author(s):  
Negar Mir ◽  
Shannon A. Chin ◽  
Michael C. Riddell ◽  
Jacqueline L. Beaudry

Glucocorticoids (GCs) are hormones that aid the body under stress by regulating glucose and free fatty acids. GCs maintain energy homeostasis in multiple tissues, including those in the liver and skeletal muscle, white adipose tissue (WAT), and brown adipose tissue (BAT). WAT stores energy as triglycerides, while BAT uses fatty acids for heat generation. The multiple genomic and non-genomic pathways in GC signaling vary with exposure duration, location (adipose tissue depot), and species. Genomic effects occur directly through the cytosolic GC receptor (GR), regulating the expression of proteins related to lipid metabolism, such as ATGL and HSL. Non-genomic effects act through mechanisms often independent of the cytosolic GR and happen shortly after GC exposure. Studying the effects of GCs on adipose tissue breakdown and generation (lipolysis and adipogenesis) leads to insights for treatment of adipose-related diseases, such as obesity, coronary disease, and cancer, but has led to controversy among researchers, largely due to the complexity of the process. This paper reviews the recent literature on the genomic and non-genomic effects of GCs on WAT and BAT lipolysis and proposes research to address the many gaps in knowledge related to GC activity and its effects on disease.


Author(s):  
Paul J. Connelly ◽  
Helen Casey ◽  
Augusto C. Montezano ◽  
Rhian M. Touyz ◽  
Christian Delles

AbstractSex hormone receptors are expressed throughout the vasculature and play an important role in the modulation of blood pressure in health and disease. The functions of these receptors may be important in the understanding of sexual dimorphism observed in the pathophysiology of both hypertension and vascular ageing. The interconnectivity of these factors can be exemplified in postmenopausal females, who with age and estrogen deprivation, surpass males with regard to hypertension prevalence, despite experiencing significantly less disease burden in their estrogen replete youth. Estrogen and androgen receptors mediate their actions via direct genomic effects or rapid non-genomic signaling, involving a host of mediators. The expression and subtype composition of these receptors changes through the lifespan in response to age, disease and hormonal exposure. These factors may promote sex steroid receptor-mediated alterations to the Renin–Angiotensin–Aldosterone System (RAAS), and increases in oxidative stress and inflammation, thereby contributing to the development of hypertension and vascular injury with age.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2693
Author(s):  
Gabriella Schiera ◽  
Carlo Maria Di Liegro ◽  
Italia Di Liegro

The development and maturation of the mammalian brain are regulated by thyroid hormones (THs). Both hypothyroidism and hyperthyroidism cause serious anomalies in the organization and function of the nervous system. Most importantly, brain development is sensitive to TH supply well before the onset of the fetal thyroid function, and thus depends on the trans-placental transfer of maternal THs during pregnancy. Although the mechanism of action of THs mainly involves direct regulation of gene expression (genomic effects), mediated by nuclear receptors (THRs), it is now clear that THs can elicit cell responses also by binding to plasma membrane sites (non-genomic effects). Genomic and non-genomic effects of THs cooperate in modeling chromatin organization and function, thus controlling proliferation, maturation, and metabolism of the nervous system. However, the complex interplay of THs with their targets has also been suggested to impact cancer proliferation as well as metastatic processes. Herein, after discussing the general mechanisms of action of THs and their physiological effects on the nervous system, we will summarize a collection of data showing that thyroid hormone levels might influence cancer proliferation and invasion.


2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 27-27
Author(s):  
Sudikshya Paudel ◽  
Hongyao Yu ◽  
Tianyuan Wang ◽  
Fuller W Bazer ◽  
Guoyao Wu ◽  
...  

Abstract Hatched ungulate (e.g., pigs, sheep and other ruminants) blastocysts undergo dramatic morphological transitions from spherical to tubular to filamentous forms to conceptuses (embryo/fetus and associated extraembryonic membranes) before implantation. L-Arginine (Arg), a conditionally essential amino acid, is required for this process to activate the mTOR cell signaling pathway to induce proliferation of both porcine and ovine conceptus trophectoderm cells. However, the genomic effects of arginine on trophectoderm cells is unknown. RNA-seq was used for a comparative transcriptome analysis of porcine and ovine trophectoderm cells to further understand effects of Arg on regulation of metabolism in trophectoderm cells. An established porcine trophectoderm (pTr) cell line isolated from D12 porcine conceptuses, as well as an established ovine trophectoderm (oTr) cell line isolated from D15 ovine conceptuses were used to determine response to Arg at the physiological concentration of 0.2 mM in a 48-h culture. In pTr cells, a total of 2,723 differentially expressed genes (DEG; 1,482 up and 1,241 down) were identified in response to Arg. In oTr cells, a total of 5,369 DEG (2,819 up and 2,550 down) were detected. Comparison analyses showed that the Arg-treated pTr and oTr transcriptomes share 873 common DEG (273 up and 342 down). Canonical pathway analyses identified the top enriched pathways in both pTr and oTr cells, including activation of actin cytoskeleton signaling, adrenomedullin signaling, and IGF-1 signaling; and inhibition of cell cycle G2/M checkpoint regulation, and p53 signaling. In response to Arg, pathways associated with cholesterol biosynthesis, and estrogen-mediated S-phase entry were exclusively activated in the pTr cells; whereas interferon signaling, ephrin receptor signaling, and integrin signaling were specifically activated in the oTr cells. Results from this study advance understanding of mechanisms responsible for elongation of ovine and porcine conceptuses and enable the rational design of future experiments.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 608
Author(s):  
Cristian G. Torres ◽  
María P. Iturriaga ◽  
Pamela Cruz

Mammary cancer is a frequent neoplasia in female dogs, in which most important risk factors are hormonal. Sexual hormones as estradiol play an important role in mammary carcinogenesis, being able to induce carcinogenic initiation, promotion and progression. However, the molecular mechanisms involved are incompletely understood. Estradiol is synthesized mainly in the ovaries, nevertheless, high concentrations of estradiol and some of its hormonal precursors have also been described in malignant mammary tumor tissue. The mechanisms of action of estradiol include the classic genomic effects that modulate gene transcription, and non-genomic effects, which trigger quick effects after estradiol binds to its specific receptors. These responses modulate various intracellular signaling pathways, triggering post-translational modification of several proteins. This review will discuss the well-known underlying mechanisms associated with the action of estradiol in the malignant progression of canine mammary tumors.


2021 ◽  
Vol 46 (2) ◽  
pp. 152-161
Author(s):  
David Galuška ◽  
Lukáš Pácal ◽  
Kateřina Kaňková

<b><i>Background:</i></b> Vitamin D is a hormone regulating not only calcium and phosphate homeostasis but also, at the same time, exerting many other extraskeletal functions via genomic effects (gene transcription) and probably by non-genomic effects as well. Availability is ensured by dietary intake of its precursors and by de novo production via sunlight. Yet, vitamin D deficiency and insufficiency are very common across the globe and are connected to many pathophysiological states, for example, diabetes mellitus, allergies, autoimmune diseases, pregnancy complications, and recently have also been associated with worse COVID-19 clinical outcomes. <b><i>Summary:</i></b> In this review, we summarize current knowledge about vitamin D metabolism in general, its role in diabetes mellitus (mainly type 2) and diabetic complications (mainly diabetic kidney disease), and potential therapeutic perspectives including vitamin D signalling as a druggable target. <b><i>Key Messages:</i></b> Vitamin D is not only a vitamin but also a hormone involved in many physiological processes. Its insufficiency or deficiency can lead to many pathological states.


2020 ◽  
Vol 16 (S3) ◽  
Author(s):  
Colleen Pappas ◽  
Qian Wang ◽  
Ling Yi Lee ◽  
Scott T. Le ◽  
Brandon S. Klinedinst ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document