scholarly journals Timing of ESCRT-III protein recruitment and membrane scission during HIV-1 assembly

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Daniel S Johnson ◽  
Marina Bleck ◽  
Sanford M Simon

The Endosomal Sorting Complexes Required for Transport III (ESCRT-III) proteins are critical for cellular membrane scission processes with topologies inverted relative to clathrin-mediated endocytosis. Some viruses appropriate ESCRT-IIIs for their release. By imaging single assembling viral-like particles of HIV-1, we observed that ESCRT-IIIs and the ATPase VPS4 arrive after most of the virion membrane is bent, linger for tens of seconds, and depart ~20 s before scission. These observations suggest that ESCRT-IIIs are recruited by a combination of membrane curvature and the late domains of the HIV-1 Gag protein. ESCRT-IIIs may pull the neck into a narrower form but must leave to allow scission. If scission does not occur within minutes of ESCRT departure, ESCRT-IIIs and VPS4 are recruited again. This mechanistic insight is likely relevant for other ESCRT-dependent scission processes including cell division, endosome tubulation, multivesicular body and nuclear envelope formation, and secretion of exosomes and ectosomes.

2018 ◽  
Author(s):  
Daniel S. Johnson ◽  
Marina Bleck ◽  
Sanford M. Simon

The Endosomal Sorting Complexes Required for Transport III (ESCRT-III) proteins are critical for cellular membrane scission processes with topologies inverted relative to clathrin-mediated endocytosis. Some viruses appropriate ESCRT-IIIs for their release. By imaging single assembling viral-like particles of HIV-1, we observed that ESCRT-IIIs and the ATPase VPS4 arrive after most of the virion membrane is bent, linger for tens of seconds, and depart ∼20 seconds before scission. These observations suggest ESCRT-IIIs are recruited by a combination of membrane curvature and the late domains of the HIV-1 Gag protein. ESCRT-IIIs may pull the neck into a narrower form but must leave to allow scission. If scission does not occur within minutes of ESCRT departure, ESCRT-III and VPS4 are recruited again. This mechanistic insight is likely relevant for other ESCRT dependent scission processes including cell division, endosome tubulation, multivesicular body and nuclear envelope formation, and secretion of exosomes and ectosomes.


2015 ◽  
Vol 112 (52) ◽  
pp. 15892-15897 ◽  
Author(s):  
Il-Hyung Lee ◽  
Hiroyuki Kai ◽  
Lars-Anders Carlson ◽  
Jay T. Groves ◽  
James H. Hurley

The endosomal sorting complexes required for transport (ESCRT) machinery functions in HIV-1 budding, cytokinesis, multivesicular body biogenesis, and other pathways, in the course of which it interacts with concave membrane necks and bud rims. To test the role of membrane shape in regulating ESCRT assembly, we nanofabricated templates for invaginated supported lipid bilayers. The assembly of the core ESCRT-III subunit CHMP4B/Snf7 is preferentially nucleated in the resulting 100-nm-deep membrane concavities. ESCRT-II and CHMP6 accelerate CHMP4B assembly by increasing the concentration of nucleation seeds. Superresolution imaging was used to visualize CHMP4B/Snf7 concentration in a negatively curved annulus at the rim of the invagination. Although Snf7 assemblies nucleate slowly on flat membranes, outward growth onto the flat membrane is efficiently nucleated at invaginations. The nucleation behavior provides a biophysical explanation for the timing of ESCRT-III recruitment and membrane scission in HIV-1 budding.


2006 ◽  
Vol 173 (5) ◽  
pp. 795-807 ◽  
Author(s):  
Sascha Nydegger ◽  
Sandhya Khurana ◽  
Dimitry N. Krementsov ◽  
Michelangelo Foti ◽  
Markus Thali

Specific spatial arrangements of proteins and lipids are central to the coordination of many biological processes. Tetraspanins have been proposed to laterally organize cellular membranes via specific associations with each other and with distinct integrins. Here, we reveal the presence of tetraspanin-enriched microdomains (TEMs) containing the tetraspanins CD9, CD63, CD81, and CD82 at the plasma membrane. Fluorescence and immunoelectron microscopic analyses document that the surface of HeLa cells is covered by several hundred TEMs, each extending over a few hundred nanometers and containing predominantly two or more tetraspanins. Further, we reveal that the human immunodeficiency virus type 1 (HIV-1) Gag protein, which directs viral assembly and release, accumulates at surface TEMs together with the HIV-1 envelope glycoprotein. TSG101 and VPS28, components of the mammalian ESCRT1 (endosomal sorting complex required for transport), which is part of the cellular extravesiculation machinery critical for HIV-1 budding, are also recruited to cell surface TEMs upon virus expression, suggesting that HIV-1 egress can be gated through these newly mapped microdomains.


2009 ◽  
Vol 37 (1) ◽  
pp. 181-184 ◽  
Author(s):  
Yoshiko Usami ◽  
Sergei Popov ◽  
Elena Popova ◽  
Michio Inoue ◽  
Winfried Weissenhorn ◽  
...  

HIV-1 Gag engages components of the ESCRT (endosomal sorting complex required for transport) pathway via so-called L (late-assembly) domains to promote virus budding. Specifically, the PTAP (Pro-Thr-Ala-Pro)-type primary L domain of HIV-1 recruits ESCRT-I by binding to Tsg101 (tumour susceptibility gene 101), and an auxiliary LYPXnL (Leu-Tyr-Pro-Xaan-Leu)-type L domain recruits the ESCRT-III-binding partner Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X]. The structurally related CHMPs (charged multivesicular body proteins), which form ESCRT-III, are kept in an inactive state through intramolecular interactions, and become potent inhibitors of HIV-1 budding upon removal of an autoinhibitory region. In the absence of the primary L domain, HIV-1 budding is strongly impaired, but can be efficiently rescued through the overexpression of Alix. This effect of Alix depends on its ability to interact with CHMP4, suggesting that it is the recruitment of CHMPs that ultimately drives virus release. Surprisingly, HIV-1 budding defects can also be efficiently corrected by overexpressing Nedd (neural-precursor-cell-expressed developmentally down-regulated) 4-2s, a member of a family of ubiquitin ligases previously implicated in the function of PPXY (Pro-Pro-Xaa-Tyr)-type L domains, which are absent from HIV-1. At least under certain circumstances, Nedd4-2s stimulates the activity of PTAP-type L domains, raising the possibility that the ubiquitin ligase regulates the activity of ESCRT-I.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kaushik Inamdar ◽  
Feng-Ching Tsai ◽  
Rayane Dibsy ◽  
Aurore de Poret ◽  
John Manzi ◽  
...  

During HIV-1 particle formation, the requisite plasma membrane curvature is thought to be solely driven by the retroviral Gag protein. Here, we reveal that the cellular I-BAR protein IRSp53 is required for the progression of HIV-1 membrane curvature to complete particle assembly. SiRNA-mediated knockdown of IRSp53 gene expression induces a decrease in viral particle production and a viral bud arrest at half completion. Single molecule localization microscopy at the cell plasma membrane shows a preferential localization of IRSp53 around HIV-1 Gag assembly sites. In addition, we observe the presence of IRSp53 in purified HIV-1 particles. Finally, HIV-1 Gag protein preferentially localizes to curved membranes induced by IRSp53 I-BAR domain on giant unilamellar vesicles. Overall, our data reveal a strong interplay between IRSp53 I-BAR and Gag at membranes during virus assembly. This highlights IRSp53 as a crucial host factor in HIV-1 membrane curvature and its requirement for full HIV-1 particle assembly.


2020 ◽  
Author(s):  
Moona Huttunen ◽  
Artur Yakimovich ◽  
Ian J. White ◽  
Janos Kriston-Vizi ◽  
Juan Martin-Serrano ◽  
...  

Unlike most enveloped viruses, poxvirus egress is a complex process whereby cytoplasmic single membrane-bound virions are wrapped in a cell-derived double membrane. These triple membrane-bound particles, termed intracellular enveloped virions (IEVs), are then released from infected cells by fusion. While the wrapping double membrane is thought to be derived from virus-modified trans-Golgi or early endosomal cisternae, the cellular factors that regulate virus wrapping remain largely undefined. To identify novel cell factors required for this process the prototypic poxvirus, vaccinia virus (VACV), was subjected to a high-throughput RNAi screen directed against cellular membrane trafficking proteins. Focusing on the endosomal sorting complexes required for transport (ESCRT), we demonstrate that ESCRT-III and VPS4 are required for packaging of virus into multivesicular bodies (MVBs). EM-based characterization of these MVB-IEVs showed that they account for half of IEV production indicating that MVBs serve as a second major source of VACV wrapping membrane. These data support a model whereby, in addition to cisternae-based wrapping, VACV hijacks ESCRT-mediated MVB formation to facilitate virus egress and spread.


2018 ◽  
Vol 46 (5) ◽  
pp. 1029-1036 ◽  
Author(s):  
James H. Hurley ◽  
A. King Cada

Human immunodeficiency virus type 1 (HIV-1) hijacks the host endosomal sorting complex required for transport (ESCRT) proteins in order to release infectious viral particles from the cell. ESCRT recruitment is virtually essential for the production of infectious virus, despite that the main structural protein of HIV-1, Gag, is capable of self-assembling and eventually budding from membranes on its own. Recent data have reinforced the paradigm of ESCRT-dependent particle release while clarifying why this rapid release is so critical. The ESCRTs were originally discovered as integral players in endosome maturation and are now implicated in many important cellular processes beyond viral and endosomal budding. Nearly all of these roles have in common that membrane scission occurs from the inward face of the membrane neck, which we refer to as ‘reverse topology’ scission. A satisfactory mechanistic description of reverse-topology membrane scission by ESCRTs remains a major challenge both in general and in the context of HIV-1 release. New observations concerning the fundamental scission mechanism for ESCRTs in general, and the process of HIV-1 release specifically, have generated new insights in both directions, bringing us closer to a mechanistic understanding.


2009 ◽  
Vol 20 (5) ◽  
pp. 1374-1387 ◽  
Author(s):  
Monica Agromayor ◽  
Jez G. Carlton ◽  
John P. Phelan ◽  
Daniel R. Matthews ◽  
Leo M. Carlin ◽  
...  

The last steps of multivesicular body (MVB) formation, human immunodeficiency virus (HIV)-1 budding and cytokinesis require a functional endosomal sorting complex required for transport (ESCRT) machinery to facilitate topologically equivalent membrane fission events. Increased sodium tolerance (IST) 1, a new positive modulator of the ESCRT pathway, has been described recently, but an essential function of this highly conserved protein has not been identified. Here, we describe the previously uncharacterized KIAA0174 as the human homologue of IST1 (hIST1), and we report its conserved interaction with VPS4, CHMP1A/B, and LIP5. We also identify a microtubule interacting and transport (MIT) domain interacting motif (MIM) in hIST1 that is necessary for its interaction with VPS4, LIP5 and other MIT domain-containing proteins, namely, MITD1, AMSH, UBPY, and Spastin. Importantly, hIST1 is essential for cytokinesis in mammalian cells but not for HIV-1 budding, thus providing a novel mechanism of functional diversification of the ESCRT machinery. Last, we show that the hIST1 MIM activity is essential for cytokinesis, suggesting possible mechanisms to explain the role of hIST1 in the last step of mammalian cell division.


2021 ◽  
Author(s):  
Kaushik Inamdar ◽  
Feng-Ching Tsai ◽  
Aurore de Poret ◽  
Rayane Dibsy ◽  
John Manzi ◽  
...  

During HIV-1 particle formation, the requisite plasma membrane curvature is thought to be solely driven by the retroviral Gag protein. Here, we reveal that the cellular I-BAR protein IRSp53 is required for the progression of HIV-1 membrane curvature to complete particle assembly. Partial gene editing of IRSp53 induces a decrease in viral particle production and a viral bud arrest at half completion. Single molecule localization microscopy at the cell plasma membrane shows a preferential localization of IRSp53 around HIV-1 Gag assembly sites. In addition, we observe the presence of IRSp53 in purified HIV-1 particles. Finally, HIV-1 Gag protein localizes preferentially to IRSp53 I-BAR domain induced curved membranes on giant unilamellar vesicles. Overall, our data reveal a strong interplay between IRSp53 I-BAR and Gag at membranes during virus assembly. This highlights IRSp53 as a crucial host factor in HIV-1 membrane curvature and its requirement for full HIV-1 particle assembly.


Sign in / Sign up

Export Citation Format

Share Document