scholarly journals Essential Role of hIST1 in Cytokinesis

2009 ◽  
Vol 20 (5) ◽  
pp. 1374-1387 ◽  
Author(s):  
Monica Agromayor ◽  
Jez G. Carlton ◽  
John P. Phelan ◽  
Daniel R. Matthews ◽  
Leo M. Carlin ◽  
...  

The last steps of multivesicular body (MVB) formation, human immunodeficiency virus (HIV)-1 budding and cytokinesis require a functional endosomal sorting complex required for transport (ESCRT) machinery to facilitate topologically equivalent membrane fission events. Increased sodium tolerance (IST) 1, a new positive modulator of the ESCRT pathway, has been described recently, but an essential function of this highly conserved protein has not been identified. Here, we describe the previously uncharacterized KIAA0174 as the human homologue of IST1 (hIST1), and we report its conserved interaction with VPS4, CHMP1A/B, and LIP5. We also identify a microtubule interacting and transport (MIT) domain interacting motif (MIM) in hIST1 that is necessary for its interaction with VPS4, LIP5 and other MIT domain-containing proteins, namely, MITD1, AMSH, UBPY, and Spastin. Importantly, hIST1 is essential for cytokinesis in mammalian cells but not for HIV-1 budding, thus providing a novel mechanism of functional diversification of the ESCRT machinery. Last, we show that the hIST1 MIM activity is essential for cytokinesis, suggesting possible mechanisms to explain the role of hIST1 in the last step of mammalian cell division.

2019 ◽  
Vol 218 (10) ◽  
pp. 3336-3354 ◽  
Author(s):  
Yoshinori Takahashi ◽  
Xinwen Liang ◽  
Tatsuya Hattori ◽  
Zhenyuan Tang ◽  
Haiyan He ◽  
...  

The process of phagophore closure requires the endosomal sorting complex required for transport III (ESCRT-III) subunit CHMP2A and the AAA ATPase VPS4, but their regulatory mechanisms remain unknown. Here, we establish a FACS-based HaloTag-LC3 autophagosome completion assay to screen a genome-wide CRISPR library and identify the ESCRT-I subunit VPS37A as a critical component for phagophore closure. VPS37A localizes on the phagophore through the N-terminal putative ubiquitin E2 variant domain, which is found to be required for autophagosome completion but dispensable for ESCRT-I complex formation and the degradation of epidermal growth factor receptor in the multivesicular body pathway. Notably, loss of VPS37A abrogates the phagophore recruitment of the ESCRT-I subunit VPS28 and CHMP2A, whereas inhibition of membrane closure by CHMP2A depletion or VPS4 inhibition accumulates VPS37A on the phagophore. These observations suggest that VPS37A coordinates the recruitment of a unique set of ESCRT machinery components for phagophore closure in mammalian cells.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Andrew Pincetic ◽  
Jonathan Leis

Retroviruses have evolved a mechanism for the release of particles from the cell membrane that appropriates cellular protein complexes, referred to as ESCRT-I, -II, -III, normally involved in the biogenesis of multivesicular bodies. Three different classes of late assembly (L) domains encoded in Gag, with core sequences of PPXY, PTAP, and YPXL, recruit different components of the ESCRT machinery to form a budding complex for virus release. Here, we highlight recent progress in identifying the role of different ESCRT complexes in facilitating budding, ubiquitination, and membrane targeting of avian sarcoma and leukosis virus (ASLV) and human immunodeficiency virus, type 1 (HIV-1). These findings show that retroviruses may adopt parallel budding pathways by recruiting different host factors from common cellular machinery for particle release.


2003 ◽  
Vol 77 (11) ◽  
pp. 6507-6519 ◽  
Author(s):  
Ritu Goila-Gaur ◽  
Dimiter G. Demirov ◽  
Jan M. Orenstein ◽  
Akira Ono ◽  
Eric O. Freed

ABSTRACT Retrovirus budding is greatly stimulated by the presence of Gag sequences known as late or L domains. The L domain of human immunodeficiency virus type 1 (HIV-1) maps to a highly conserved Pro-Thr-Ala-Pro (PTAP) sequence in the p6 domain of Gag. We and others recently observed that the p6 PTAP motif interacts with the cellular endosomal sorting protein TSG101. Consistent with a role for TSG101 in virus release, we demonstrated that overexpressing the N-terminal, Gag-binding domain of TSG101 (TSG-5′) suppresses HIV-1 budding by blocking L domain function. To elucidate the role of TSG101 in HIV-1 budding, we evaluated the significance of the binding between Gag and TSG-5′ on the inhibition of HIV-1 release. We observed that a mutation in TSG-5′ that disrupts the Gag/TSG101 interaction suppresses the ability of TSG-5′ to inhibit HIV-1 release. We also determined the effect of overexpressing a panel of truncated TSG101 derivatives and full-length TSG101 (TSG-F) on virus budding. Overexpressing TSG-F inhibits HIV-1 budding; however, the effect of TSG-F on virus release does not require Gag binding. Furthermore, overexpression of the C-terminal portion of TSG101 (TSG-3′) potently inhibits budding of not only HIV-1 but also murine leukemia virus. Confocal microscopy data indicate that TSG-F and TSG-3′ overexpression induces an aberrant endosome phenotype; this defect is dependent upon the C-terminal, Vps-28-binding domain of TSG101. We propose that TSG-5′ suppresses HIV-1 release by binding PTAP and blocking HIV-1 L domain function, whereas overexpressing TSG-F or TSG-3′ globally inhibits virus release by disrupting the cellular endosomal sorting machinery. These results highlight the importance of TSG101 and the endosomal sorting pathway in virus budding and suggest that inhibitors can be developed that, like TSG-5′, target HIV-1 without disrupting endosomal sorting.


2018 ◽  
Vol 46 (3) ◽  
pp. 537-545 ◽  
Author(s):  
Marisa S. Otegui

The degradation of plasma membrane and other membrane-associated proteins require their sorting at endosomes for delivery to the vacuole. Through the endocytic pathway, ubiquitinated membrane proteins (cargo) are delivered to endosomes where the ESCRT (endosomal sorting complex required for transport) machinery sorts them into intralumenal vesicles for degradation. Plants contain both conserved and plant-specific ESCRT subunits. In this review, I discuss the role of characterized plant ESCRT components, the evolutionary diversification of the plant ESCRT machinery, and a recent study showing that endosomal intralumenal vesicles form in clusters of concatenated vesicle buds by temporally uncoupling membrane constriction from membrane fission.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Lorna S. Ehrlich ◽  
Carol A. Carter

More than a decade has elapsed since the link between the endosomal sorting complex required for transport (ESCRT) machinery and HIV-1 protein trafficking and budding was first identified. L domains in HIV-1 Gag mediate recruitment of ESCRT which function in bud abscission releasing the viral particle from the host cell. Beyond virus budding, the ESCRT machinery is also involved in the endocytic pathway, cytokinesis, and autophagy. In the past few years, the number of non-ESCRT host proteins shown to be required in the assembly process has also grown. In this paper, we highlight the role of recently identified cellular factors that link ESCRT machinery to calcium signaling machinery and we suggest that this liaison contributes to setting the stage for productive ESCRT recruitment and mediation of abscission. Parallel paradigms for non-ESCRT roles in virus budding and cytokinesis will be discussed.


2005 ◽  
Vol 280 (11) ◽  
pp. 10548-10555 ◽  
Author(s):  
Diane McVey Ward ◽  
Michael B. Vaughn ◽  
Shelly L. Shiflett ◽  
Paul L. White ◽  
Amanda L. Pollock ◽  
...  

2006 ◽  
Vol 80 (19) ◽  
pp. 9789-9797 ◽  
Author(s):  
Andrés Finzi ◽  
Alexandre Brunet ◽  
Yong Xiao ◽  
Jacques Thibodeau ◽  
Éric A. Cohen

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) assembly, budding, and release occur mostly at the plasma membrane in T lymphocytes as well as in established nonlymphoid cell lines, while in macrophages these processes occur primarily in intracellular compartments that harbor late endosomal/multivesicular body (LE/MVB) markers, including human leukocyte antigen DR (HLA-DR). Major histocompatibility complex class II molecules (MHC-II), which are expressed in macrophages and activated T cells, have been previously reported to induce the formation of multilaminar and multivesicular endocytic MHC-II-like structures analogous to MVB upon their expression in HEK 293 cells. Here, we have examined the role of MHC-II in HIV-1 Gag targeting as well as in virus assembly and release. Expression of HLA-DR in nonlymphoid cell lines induced a relocation of Gag to intracellular compartments that harbored LE/MVB markers and increased the accumulation of viral particles assembling intracellularly. Consequently, viral production and release from the cell surface was found to be substantially decreased in HLA-DR-expressing cells. This process was specific, since it was not observed with HLA-DR molecules lacking their cytoplasmic tails, nor with structurally related but functionally distinct MHC-II molecules such as HLA-DM or HLA-DO. Importantly, virus released intracellularly in HLA-DR-expressing cells retained infectivity. Overall, these results suggest a role of MHC-II molecules in promoting HIV-1 assembly and budding to LE/MVB and raise the possibility that this activity might be part of a normal pathway of virus production in cell types physiologically expressing MHC-II molecules, such as macrophages.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 100
Author(s):  
Eric Rossi ◽  
Megan E. Meuser ◽  
Camille J. Cunanan ◽  
Simon Cocklin

The capsid (CA) protein of the human immunodeficiency virus type 1 (HIV-1) is an essential structural component of a virion and facilitates many crucial life cycle steps through interactions with host cell factors. Capsid shields the reverse transcription complex from restriction factors while it enables trafficking to the nucleus by hijacking various adaptor proteins, such as FEZ1 and BICD2. In addition, the capsid facilitates the import and localization of the viral complex in the nucleus through interaction with NUP153, NUP358, TNPO3, and CPSF-6. In the later stages of the HIV-1 life cycle, CA plays an essential role in the maturation step as a constituent of the Gag polyprotein. In the final phase of maturation, Gag is cleaved, and CA is released, allowing for the assembly of CA into a fullerene cone, known as the capsid core. The fullerene cone consists of ~250 CA hexamers and 12 CA pentamers and encloses the viral genome and other essential viral proteins for the next round of infection. As research continues to elucidate the role of CA in the HIV-1 life cycle and the importance of the capsid protein becomes more apparent, CA displays potential as a therapeutic target for the development of HIV-1 inhibitors.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 446
Author(s):  
Kevin M. Rose ◽  
Stephanie J. Spada ◽  
Rebecca Broeckel ◽  
Kristin L. McNally ◽  
Vanessa M. Hirsch ◽  
...  

An evolutionary arms race has been ongoing between retroviruses and their primate hosts for millions of years. Within the last century, a zoonotic transmission introduced the Human Immunodeficiency Virus (HIV-1), a retrovirus, to the human population that has claimed the lives of millions of individuals and is still infecting over a million people every year. To counteract retroviruses such as this, primates including humans have evolved an innate immune sensor for the retroviral capsid lattice known as TRIM5α. Although the molecular basis for its ability to restrict retroviruses is debated, it is currently accepted that TRIM5α forms higher-order assemblies around the incoming retroviral capsid that are not only disruptive for the virus lifecycle, but also trigger the activation of an antiviral state. More recently, it was discovered that TRIM5α restriction is broader than previously thought because it restricts not only the human retroelement LINE-1, but also the tick-borne flaviviruses, an emergent group of RNA viruses that have vastly different strategies for replication compared to retroviruses. This review focuses on the underlying mechanisms of TRIM5α-mediated restriction of retroelements and flaviviruses and how they differ from the more widely known ability of TRIM5α to restrict retroviruses.


2019 ◽  
Vol 47 (1) ◽  
pp. 441-448 ◽  
Author(s):  
Christophe Caillat ◽  
Sourav Maity ◽  
Nolwenn Miguet ◽  
Wouter H. Roos ◽  
Winfried Weissenhorn

Abstract The endosomal sorting complex required for transport-III (ESCRT-III) and VPS4 catalyze a variety of membrane-remodeling processes in eukaryotes and archaea. Common to these processes is the dynamic recruitment of ESCRT-III proteins from the cytosol to the inner face of a membrane neck structure, their activation and filament formation inside or at the membrane neck and the subsequent or concomitant recruitment of the AAA-type ATPase VPS4. The dynamic assembly of ESCRT-III filaments and VPS4 on cellular membranes induces constriction of membrane necks with large diameters such as the cytokinetic midbody and necks with small diameters such as those of intraluminal vesicles or enveloped viruses. The two processes seem to use different sets of ESCRT-III filaments. Constriction is then thought to set the stage for membrane fission. Here, we review recent progress in understanding the structural transitions of ESCRT-III proteins required for filament formation, the functional role of VPS4 in dynamic ESCRT-III assembly and its active role in filament constriction. The recent data will be discussed in the context of different mechanistic models for inside-out membrane fission.


Sign in / Sign up

Export Citation Format

Share Document