scholarly journals A switch in surface polymer biogenesis triggers growth-phase-dependent and antibiotic-induced bacteriolysis

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Josué Flores-Kim ◽  
Genevieve S Dobihal ◽  
Andrew Fenton ◽  
David Z Rudner ◽  
Thomas G Bernhardt

Penicillin and related antibiotics disrupt cell wall synthesis to induce bacteriolysis. Lysis in response to these drugs requires the activity of cell wall hydrolases called autolysins, but how penicillins misactivate these deadly enzymes has long remained unclear. Here, we show that alterations in surface polymers called teichoic acids (TAs) play a key role in penicillin-induced lysis of the Gram-positive pathogen Streptococcus pneumoniae (Sp). We find that during exponential growth, Sp cells primarily produce lipid-anchored TAs called lipoteichoic acids (LTAs) that bind and sequester the major autolysin LytA. However, penicillin-treatment or prolonged stationary phase growth triggers the degradation of a key LTA synthase, causing a switch to the production of wall-anchored TAs (WTAs). This change allows LytA to associate with and degrade its cell wall substrate, thus promoting osmotic lysis. Similar changes in surface polymer assembly may underlie the mechanism of antibiotic- and/or growth phase-induced lysis for other important Gram-positive pathogens.

2022 ◽  
Author(s):  
Josué Flores-Kim ◽  
Genevieve S Dobihal ◽  
Thomas G Bernhardt ◽  
David Z Rudner

Penicillin and related antibiotics disrupt cell wall synthesis in bacteria and induce lysis by misactivating cell wall hydrolases called autolysins. Despite the clinical importance of this phenomenon, little is known about the factors that control autolysins and how penicillins subvert this regulation to kill cells. In the pathogen Streptococcus pneumoniae (Sp), LytA is the major autolysin responsible for penicillin-induced bacteriolysis. We recently discovered that penicillin treatment of Sp causes a dramatic shift in surface polymer biogenesis in which cell wall-anchored teichoic acids (WTAs) increase in abundance at the expense of lipid-linked lipoteichoic acids. Because LytA binds to these polymers, this change recruits the enzyme to its substrate where it cleaves the cell wall and elicits lysis. In this report, we identify WhyD (SPD_0880) as a new factor that controls the level of WTAs in Sp cells to prevent LytA misactivation and lysis. We show that WhyD is a WTA hydrolase that restricts the WTA content of the wall to areas adjacent to active PG synthesis. Our results support a model in which the WTA tailoring activity of WhyD directs PG remodeling activity required for proper cell elongation in addition to preventing autolysis by LytA.


1978 ◽  
Vol 24 (5) ◽  
pp. 563-568 ◽  
Author(s):  
U. Singer ◽  
R. Röschenthaler

Ochratoxin A (OTA) added during the exponential growth phase at a concentration higher than 12 μg/ml caused autolysis of Bacillus subtilis. Optical density of cultures decreased, and at higher concentrations the cultures became sterile. Optimum OTA-induced lysis was about pH 5. At concentrations below 10 μg/ml, protein synthesis was inhibited more strongly than RNA synthesis. Cell wall synthesis was also strongly inhibited. A fraction extracted from the lysates had the property of a lysis inhibitor. The relevance of this fraction in respect to autolysis is discussed.


mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Marina Borisova ◽  
Rosmarie Gaupp ◽  
Amanda Duckworth ◽  
Alexander Schneider ◽  
Désirée Dalügge ◽  
...  

ABSTRACTPeptidoglycan recycling is a metabolic process by which Gram-negative bacteria reutilize up to half of their cell wall within one generation during vegetative growth. Whether peptidoglycan recycling also occurs in Gram-positive bacteria has so far remained unclear. We show here that three Gram-positive model organisms,Staphylococcus aureus,Bacillus subtilis, andStreptomyces coelicolor, all recycle the sugarN-acetylmuramic acid (MurNAc) of their peptidoglycan during growth in rich medium. They possess MurNAc-6-phosphate (MurNAc-6P) etherase (MurQ inE. coli) enzymes, which are responsible for the intracellular conversion of MurNAc-6P toN-acetylglucosamine-6-phosphate andd-lactate. By applying mass spectrometry, we observed accumulation of MurNAc-6P in MurNAc-6P etherase deletion mutants but not in either the isogenic parental strains or complemented strains, suggesting that MurQ orthologs are required for the recycling of cell wall-derived MurNAc in these bacteria. Quantification of MurNAc-6P in ΔmurQcells ofS. aureusandB. subtilisrevealed small amounts during exponential growth phase (0.19 nmol and 0.03 nmol, respectively, per ml of cells at an optical density at 600 nm [OD600] of 1) but large amounts during transition (0.56 nmol and 0.52 nmol) and stationary (0.53 nmol and 1.36 nmol) phases. The addition of MurNAc to ΔmurQcultures greatly increased the levels of intracellular MurNAc-6P in all growth phases. The ΔmurQmutants ofS. aureusandB. subtilisshowed no growth deficiency in rich medium compared to the growth of the respective parental strains, but intriguingly, they had a severe survival disadvantage in late stationary phase. Thus, although peptidoglycan recycling is apparently not essential for the growth of Gram-positive bacteria, it provides a benefit for long-term survival.IMPORTANCEThe peptidoglycan of the bacterial cell wall is turned over steadily during growth. As peptidoglycan fragments were found in large amounts in spent medium of exponentially growing Gram-positive bacteria, their ability to recycle these fragments has been questioned. We conclusively showed recycling of the peptidoglycan component MurNAc in different Gram-positive model organisms and revealed that a MurNAc-6P etherase (MurQ or MurQ ortholog) enzyme is required in this process. We further demonstrated that recycling occurs predominantly during the transition to stationary phase inS. aureusandB. subtilis, explaining why peptidoglycan fragments are found in the medium during exponential growth. We quantified the intracellular accumulation of recycling products in MurNAc-6P etherase gene mutants, revealing that about 5% and 10% of the MurNAc of the cell wall per generation is recycled inS. aureusandB. subtilis, respectively. Importantly, we showed that MurNAc recycling and salvaging does not sustain growth in these bacteria but is used to enhance survival during late stationary phase.


2019 ◽  
Author(s):  
Carolin M Kobras ◽  
Hannah Piepenbreier ◽  
Jennifer Emenegger ◽  
Andre Sim ◽  
Georg Fritz ◽  
...  

ABSTRACTResistance against cell wall-active antimicrobial peptides in bacteria is often mediated by transporters. In low GC-content Gram-positive bacteria, a wide-spread type of such transporters are the BceAB-like systems, which frequently provide a high level of resistance against peptide antibiotics that target intermediates of the lipid II cycle of cell wall synthesis. How a transporter can offer protection from drugs that are active on the cell surface, however, has presented researchers with a conundrum. Multiple theories have been discussed, ranging from removal of the peptides from the membrane, internalisation of the drug for degradation, to removal of the cellular target rather than the drug itself. To resolve this much-debated question, we here investigated the mode of action of the transporter BceAB of Bacillus subtilis. We show that it does not inactivate or import its substrate antibiotic bacitracin. Moreover, we present evidence that the critical factor driving transport activity is not the drug itself, but instead the concentration of drug-target complexes in the cell. Our results, together with previously reported findings, lead us to propose that BceAB-type transporters act by transiently freeing lipid II cycle intermediates from the inhibitory grip of antimicrobial peptides, and thus provide resistance through target protection of cell wall synthesis. Target protection has so far only been reported for resistance against antibiotics with intracellular targets, such as the ribosome. However, this mechanism offers a plausible explanation for the use of transporters as resistance determinants against cell wall-active antibiotics in Gram-positive bacteria where cell wall synthesis lacks the additional protection of an outer membrane.


2019 ◽  
Author(s):  
Surya D. Aggarwal ◽  
Saigopalakrishna S. Yerneni ◽  
Ana Rita Narciso ◽  
Sergio R. Filipe ◽  
N. Luisa Hiller

ABSTRACTTo ensure survival during colonization of the human host, bacteria must successfully respond to unfavorable and fluctuating conditions. This study explores the fundamental phenomenon of stress response in a gram-positive bacterium, where we investigate the ability of a cell wall modification enzyme to modulate intracellular stress and prevent the triggering of the stringent response pathway. TheStreptococcus pneumoniaecell wall modification proteins MurM and MurN are tRNA-dependent amino acid ligases, which lead to the production of branched muropeptides by generating peptide crossbridges. In addition, MurM has been proposed to contribute to translation quality control by preferentially deacylating mischarged tRNAs mischarged with amino acids that make up the peptidoglycan. Here, we demonstrate that themurMNoperon promotes optimal growth under stressed conditions. Specifically, when grown in mildly acidic conditions, amurMNdeletion mutant displays early entry into stationary phase and dramatically increased lysis. Surprisingly, these defects are rescued by inhibition of the stringent response pathway or by enhancement of the cell’s ability to deacylate mischarged tRNA molecules. The increase in lysis results from the activity of LytA, and experiments in macrophages reveal thatmurMNregulates phagocytosis in a LytA-dependent manner. These results suggest that under certain stresses, these bacterial cells lacking MurMN likely accumulate mischarged tRNA molecules, activate the stringent response pathway, and enter prematurely into stationary phase. Moreover, by virtue of its ability to deacylate mischarged tRNAs while building peptidoglycan crossbridges, MurM can calibrate the stress response with consequences to host-pathogen interactions. Thus, MurM is positioned at the interface of cell wall modification, translation quality control and stringent response. These findings expand our understanding of the functions of the bacterial cell wall: cell wall modifications that impart structural rigidity to the cell are interlinked to the cell’s ability to signal intracellularly and mount a response to environmental stresses.SIGNIFICANCEDuring infection, microbes must survive the hostile environmental conditions of the human host. When exposed to stresses, bacteria activate an intracellular response, known as stringent response pathway, to ensure their survival. This study connects two fundamental pathways important for cellular growth in a gram-positive bacterium; it demonstrates that enzymes responsible for cell wall modification are connected to the stringent response pathway via their ability to ameliorate errors in protein translation. Our study was performed onStreptococcus pneumoniaewhere the cell wall modification enzyme, MurM, is a known determinant of penicillin resistance. We now demonstrate the importance of MurM in translation quality control and establish that it serves as a gatekeeper of the stringent response pathway.


2008 ◽  
Vol 190 (9) ◽  
pp. 3283-3292 ◽  
Author(s):  
Michal Letek ◽  
Efrén Ordóñez ◽  
José Vaquera ◽  
William Margolin ◽  
Klas Flärdh ◽  
...  

ABSTRACT The actinomycete Corynebacterium glutamicum grows as rod-shaped cells by zonal peptidoglycan synthesis at the cell poles. In this bacterium, experimental depletion of the polar DivIVA protein (DivIVACg) resulted in the inhibition of polar growth; consequently, these cells exhibited a coccoid morphology. This result demonstrated that DivIVA is required for cell elongation and the acquisition of a rod shape. DivIVA from Streptomyces or Mycobacterium localized to the cell poles of DivIVACg-depleted C. glutamicum and restored polar peptidoglycan synthesis, in contrast to DivIVA proteins from Bacillus subtilis or Streptococcus pneumoniae, which localized at the septum of C. glutamicum. This confirmed that DivIVAs from actinomycetes are involved in polarized cell growth. DivIVACg localized at the septum after cell wall synthesis had started and the nucleoids had already segregated, suggesting that in C. glutamicum DivIVA is not involved in cell division or chromosome segregation.


1958 ◽  
Vol 230 (2) ◽  
pp. 961-977
Author(s):  
Gerald D. Shockman ◽  
Joseph J. Kolb ◽  
Gerrit Toennies

2020 ◽  
Vol 117 (38) ◽  
pp. 23879-23885 ◽  
Author(s):  
Lindsey S. Marmont ◽  
Thomas G. Bernhardt

Cell division in bacteria is mediated by a multiprotein assembly called the divisome. A major function of this machinery is the synthesis of the peptidoglycan (PG) cell wall that caps the daughter poles and prevents osmotic lysis of the newborn cells. Recent studies have implicated a complex of FtsW and FtsI (FtsWI) as the essential PG synthase within the divisome; however, how PG polymerization by this synthase is regulated and coordinated with other activities within the machinery is not well understood. Previous results have implicated a conserved subcomplex of division proteins composed of FtsQ, FtsL, and FtsB (FtsQLB) in the regulation of FtsWI, but whether these proteins act directly as positive or negative regulators of the synthase has been unclear. To address this question, we purified a five-memberPseudomonas aeruginosadivision complex consisting of FtsQLB-FtsWI. The PG polymerase activity of this complex was found to be greatly stimulated relative to FtsWI alone. Purification of complexes lacking individual components indicated that FtsL and FtsB are sufficient for FtsW activation. Furthermore, support for this activity being important for the cellular function of FtsQLB was provided by the identification of two division-defective variants of FtsL that still form normal FtsQLB-FtsWI complexes but fail to activate PG synthesis. Thus, our results indicate that the conserved FtsQLB complex is a direct activator of PG polymerization by the FtsWI synthase and thereby define an essential regulatory step in the process of bacterial cell division.


Sign in / Sign up

Export Citation Format

Share Document