scholarly journals Author response: Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration

2020 ◽  
Author(s):  
Konstantinos Sousounis ◽  
Donald M Bryant ◽  
Jose Martinez Fernandez ◽  
Samuel S Eddy ◽  
Stephanie L Tsai ◽  
...  
eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Konstantinos Sousounis ◽  
Donald M Bryant ◽  
Jose Martinez Fernandez ◽  
Samuel S Eddy ◽  
Stephanie L Tsai ◽  
...  

How salamanders accomplish progenitor cell proliferation while faithfully maintaining genomic integrity and regenerative potential remains elusive. Here we found an innate DNA damage response mechanism that is evident during blastema proliferation (early- to late-bud) and studied its role during tissue regeneration by ablating the function of one of its components, Eyes absent 2. In eya2 mutant axolotls, we found that DNA damage signaling through the H2AX histone variant was deregulated, especially within the proliferating progenitors during limb regeneration. Ultimately, cell cycle progression was impaired at the G1/S and G2/M transitions and regeneration rate was reduced. Similar data were acquired using acute pharmacological inhibition of the Eya2 phosphatase activity and the DNA damage checkpoint kinases Chk1 and Chk2 in wild-type axolotls. Together, our data indicate that highly-regenerative animals employ a robust DNA damage response pathway which involves regulation of H2AX phosphorylation via Eya2 to facilitate proper cell cycle progression upon injury.


2020 ◽  
Vol 40 (5) ◽  
pp. 2449-2456
Author(s):  
ALEXANDRA KANELLOU ◽  
NICKOLAOS NIKIFOROS GIAKOUMAKIS ◽  
ANDREAS PANAGOPOULOS ◽  
SPYRIDON CHAMPERIS TSANIRAS ◽  
ZOI LYGEROU

Open Biology ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 140156 ◽  
Author(s):  
Didier J. Colin ◽  
Karolina O. Hain ◽  
Lindsey A. Allan ◽  
Paul R. Clarke

Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-x L by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.


2017 ◽  
Author(s):  
Filippo Casonil ◽  
Laura Crocil ◽  
Camilla Bosonel ◽  
Roberta D’Ambrosio ◽  
Aurora Badaloni ◽  
...  

ABSTRACTNeurogenesis is a tightly regulated process whose success depends on the ability to balance the expansion/maintenance of an undifferentiated neural progenitor pool with the precisely timed birth of sequential generations of neurons. The Zfp423 gene encodes a 30-Zn-finger transcription factor (TF) that acts as a scaffold in the assembly of complex transcriptional and cellular machineries regulating neural development. While null mutants for Zfp423 feature a severe cerebellar hypoplasia, the underlying mechanism is only partially characterized. Mutations of the human ortholog ZNF423 have been identified in patients carrying cerebellar vermis hypoplasia (CVH) or Joubert Syndrome (JS), associated with other signs of classical ciliopathy outside the central nervous system (CNS). ZNF423 also plays a role in the DNA damage response (DDR). To further characterize the role of ZFP423 in cerebellar neurogenesis, with a focus on Purkinje cells (PC) development, we analyzed two previously undescribed mutant mouse lines carrying allelic in-frame deletions of the corresponding gene, selectively affecting two functionally characterized protein-protein interaction domains, affecting zinc (Zn) fingers 9-20 or 28-30. Some phenotypic defects are allele specific: Zfp423Δ9-20/Δ9-20 mutants exhibit a depletion of the OLIG2+ PC progenitor pool in the cerebellar ventricular zone (VZ). In these mutants, M-phase progenitors display changes in spindle orientation indicative of a precocious switch from symmetric to asymmetric cell division. Conversely, the Zfp423Δ28-30/Δ28-30 primordium displays a sharp decrease in the expression of PC differentiation markers, including CORL2, despite an abundance of cycling PC progenitors. Moreover, and importantly, in both mutants VZ progenitor cell cycle progression is remarkably affected, and factors involved in the DDR are substantially upregulated in the VZ and in postmitotic precursors alike. Our in vivo evidence sheds light on the domain-specific roles played by ZFP423 in different aspects of PC progenitor development, and at the same time supports the emerging notion that an impaired DNA damage response may be a key factor in the pathogenesis of JS and other ciliopathies.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1655-1655
Author(s):  
Simone Boehrer ◽  
Lionel Ades ◽  
Nicolas Tajeddine ◽  
Lorenzo Galluzzi ◽  
Stephane de Botton ◽  
...  

Abstract Background: The hypomethylating agents azacytidine (AZA) and decitabine (DEC) have shown clinical efficacy in patients (pts) with MDS. There is in vitro evidence that both agents, in addition to their hypomethylating effect, also function by inducing apoptosis, cell cycle arrest and/or the activation of a DNA damage response (DDR). However, the exact contributions of those mechanisms of action and their functional interdependence remain to be defined. Methods: A panel of MDS (P39, MDS-1)- and AML (HL-60, KG-1)-derived cell lines were incubated with increasing dosages of AZA (1–2μM) and DEC (1–2μM) and the drugs capacity to induce apoptosis (DiOC6(3)/PI), cell cycle arrest (PI) and/or a DDR (immunoflourescence staining of P-ATM, P-Chk-1, P-Chk-2, γ-H2AX) were assessed in absence and presence of the ATM-inhibitor KU-55933 and the Chk-1 inhibitor UCN-01. Results: We show that both drugs induced dose-dependent apoptosis in myeloid cell lines: whereas AZA increased apoptosis in KG-1 and HL-60 by about 10% (48h, 2μM) the respective incubation with DEC augmented apoptosis by about 20% (HL-60) to 30% (KG-1). P39 cells were resistant to AZA and increased apoptosis by 15% after 48h of 2μM DEC, and MDS-1 cells were resistant to both drugs. In addition, both drugs induced a G2/M-arrest in P39 (+15% after 48h with 2μM of AZA or DEC) and HL-60 (+20% after 48h with 2μM of AZA or DEC) cells, but not in KG-1 and MDS-1 cells. Noteworthy, both drugs induced a DDR in the apoptosis-sensitive KG-1 cells (but not P39 cells) as evidenced by the appearance of nuclear P-ATM and γ-H2AX foci. Surprisingly, this activation of P-ATM did not induce the nuclear translocation of P-Chk-1-Ser317 or P-Chk-2-Ser68. To more clearly define the importance of the DDR in AZA- and DEC-induced apoptosis and G2/M-arrest, experiments were recapitulated in the presence of the ATM-inhibitor KU-55933 and the Chk-1 inhibitor UCN-01. Inhibition of ATM abrogated the apoptosis-inducing activity of AZA and DEC in KG-1 cells (without influencing cell cycle progression), whereas inhibition of Chk-1 remained without effect. In contrast, in P39 and HL-60 cells, inhibition of ATM neither affected cell cycle progression, nor sensitivity towards the drugs. Nevertheless, inhibition of Chk-1 by UCN-01 completely abrogated the G2/M-arresting effect of AZA (and diminished that of DEC) in P39 and HL-60 cells. Conclusions: We provide novel evidence for the cell-type dependent capacity of the hypomethylating agents 5-azacytidine and decitabine to induce apoptosis, cell-cycle arrest and DDR in cell lines representing different subtypes of MDS and AML. Moreover, we show the crucial role of ATM and Chk-1 activation – as part of the DDR – in mediating AZA and DEC apoptosis-inducing and cell cycle-arresting effects, respectively, providing evidence that hypomethylating agents confer their beneficial effects by employing different pathways of the DDR.


Sign in / Sign up

Export Citation Format

Share Document