scholarly journals Decision letter: Unbiased homeologous recombination during pneumococcal transformation allows for multiple chromosomal integration events

2020 ◽  
Author(s):  
Jason Rosch
2020 ◽  
Author(s):  
Jun Kurushima ◽  
Nathalie Campo ◽  
Renske van Raaphorst ◽  
Guillaume Cerckel ◽  
Patrice Polard ◽  
...  

Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 133-146 ◽  
Author(s):  
Ainsley Nicholson ◽  
Miyono Hendrix ◽  
Sue Jinks-Robertson ◽  
Gray F Crouse

Abstract The Saccharomyces cerevisiae homologs of the bacterial mismatch repair proteins MutS and MutL correct replication errors and prevent recombination between homeologous (nonidentical) sequences. Previously, we demonstrated that Msh2p, Msh3p, and Pms1p regulate recombination between 91% identical inverted repeats, and here use the same substrates to show that Mlh1p and Msh6p have important antirecombination roles. In addition, substrates containing defined types of mismatches (base-base mismatches; 1-, 4-, or 12-nt insertion/deletion loops; or 18-nt palindromes) were used to examine recognition of these mismatches in mitotic recombination intermediates. Msh2p was required for recognition of all types of mismatches, whereas Msh6p recognized only base-base mismatches and 1-nt insertion/deletion loops. Msh3p was involved in recognition of the palindrome and all loops, but also had an unexpected antirecombination role when the potential heteroduplex contained only base-base mismatches. In contrast to their similar antimutator roles, Pms1p consistently inhibited recombination to a lesser degree than did Msh2p. In addition to the yeast MutS and MutL homologs, the exonuclease Exo1p and the nucleotide excision repair proteins Rad1p and Rad10p were found to have roles in inhibiting recombination between mismatched substrates.


2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Stefano Vecchione ◽  
Georg Fritz

Abstract Background Synthetic biology heavily depends on rapid and simple techniques for DNA engineering, such as Ligase Cycling Reaction (LCR), Gibson assembly and Golden Gate assembly, all of which allow for fast, multi-fragment DNA assembly. A major enhancement of Golden Gate assembly is represented by the Modular Cloning (MoClo) system that allows for simple library propagation and combinatorial construction of genetic circuits from reusable parts. Yet, one limitation of the MoClo system is that all circuits are assembled in low- and medium copy plasmids, while a rapid route to chromosomal integration is lacking. To overcome this bottleneck, here we took advantage of the conditional-replication, integration, and modular (CRIM) plasmids, which can be integrated in single copies into the chromosome of Escherichia coli and related bacteria by site-specific recombination at different phage attachment (att) sites. Results By combining the modularity of the MoClo system with the CRIM plasmids features we created a set of 32 novel CRIMoClo plasmids and benchmarked their suitability for synthetic biology applications. Using CRIMoClo plasmids we assembled and integrated a given genetic circuit into four selected phage attachment sites. Analyzing the behavior of these circuits we found essentially identical expression levels, indicating orthogonality of the loci. Using CRIMoClo plasmids and four different reporter systems, we illustrated a framework that allows for a fast and reliable sequential integration at the four selected att sites. Taking advantage of four resistance cassettes the procedure did not require recombination events between each round of integration. Finally, we assembled and genomically integrated synthetic ECF σ factor/anti-σ switches with high efficiency, showing that the growth defects observed for circuits encoded on medium-copy plasmids were alleviated. Conclusions The CRIMoClo system enables the generation of genetic circuits from reusable, MoClo-compatible parts and their integration into 4 orthogonal att sites into the genome of E. coli. Utilizing four different resistance modules the CRIMoClo system allows for easy, fast, and reliable multiple integrations. Moreover, utilizing CRIMoClo plasmids and MoClo reusable parts, we efficiently integrated and alleviated the toxicity of plasmid-borne circuits. Finally, since CRIMoClo framework allows for high flexibility, it is possible to utilize plasmid-borne and chromosomally integrated circuits simultaneously. This increases our ability to permute multiple genetic modules and allows for an easier design of complex synthetic metabolic pathways in E. coli.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Astrid V. Cienfuegos-Gallet ◽  
Liang Chen ◽  
Barry N. Kreiswirth ◽  
J. Natalia Jiménez

ABSTRACT Here we describe the spread of colistin resistance in clinical isolates of carbapenem-resistant Klebsiella pneumoniae in Medellín, Colombia. Among 32 isolates collected between 2012 and 2014, 24 showed genetic alterations in mgrB. Nineteen isolates belonged to sequence type 512 (ST512) (or its single locus variant [SLV]) and harbored an 8.1-kb hsdMSR insertion corresponding to ISKpn25, indicating a clonal expansion of the resistant strain. The insertion region showed 100% identity to several plasmids, suggesting that the colistin resistance is mediated by chromosomal integration of plasmid DNA.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Nitish Gulve ◽  
Celina Frank ◽  
Maximilian Klepsch ◽  
Bhupesh K. Prusty

2010 ◽  
Vol 30 (8) ◽  
pp. 1887-1897 ◽  
Author(s):  
Jeannine R. LaRocque ◽  
Maria Jasin

ABSTRACT Double-strand breaks (DSBs) are particularly deleterious DNA lesions for which cells have developed multiple mechanisms of repair. One major mechanism of DSB repair in mammalian cells is homologous recombination (HR), whereby a homologous donor sequence is used as a template for repair. For this reason, HR repair of DSBs is also being exploited for gene modification in possible therapeutic approaches. HR is sensitive to sequence divergence, such that the cell has developed ways to suppress recombination between diverged (“homeologous”) sequences. In this report, we have examined several aspects of HR between homeologous sequences in mouse and human cells. We found that gene conversion tracts are similar for mouse and human cells and are generally ≤100 bp, even in Msh2 − / − cells which fail to suppress homeologous recombination. Gene conversion tracts are mostly unidirectional, with no observed mutations. Additionally, no alterations were observed in the donor sequences. While both mouse and human cells suppress homeologous recombination, the suppression is substantially less in the transformed human cells, despite similarities in the gene conversion tracts. BLM-deficient mouse and human cells suppress homeologous recombination to a similar extent as wild-type cells, unlike Sgs1-deficient Saccharomyces cerevisiae.


1986 ◽  
Vol 6 (12) ◽  
pp. 4179-4184
Author(s):  
H Hamada

Expression of enhancerless (E-) and enhancer-containing (E+) genes that are chromosomally integrated was examined. An E- plasmid (pE-cat) containing a chloramphenicol acetyltransferase (cat) gene linked to the simian virus 40 (SV40) early promoter or its E+ counterpart plasmid (pE+-cat) containing the SV40 enhancer was cotransfected into thymidine kinase (TK)-deficient L cells with a cloned tk gene. A number of TK+ transformants were isolated, and expression of the cointegrated cat gene in these cell lines was quantitatively determined by the assay of CAT activity. The results indicated unexpectedly that the E- cat gene was as actively expressed as the E+ cat gene. Analysis of CAT mRNA by primer extension indicated that the E- cat gene, as well as the E+ cat gene, was transcribed from the "native" initiation site contained in the SV40 early promoter region. The active expression of the E- cat gene was maintained in secondary TK+ transformants that arose by transfection with genomic DNA from the primary transformant. These results suggest that expression of the integrated E- cat gene is activated by endogenous enhancer elements.


Sign in / Sign up

Export Citation Format

Share Document