scholarly journals HDAC1 SUMOylation promotes Argonaute-directed transcriptional silencing in C. elegans

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Heesun Kim ◽  
Yue-He Ding ◽  
Gangming Zhang ◽  
Yong-Hong Yan ◽  
Darryl Conte ◽  
...  

Eukaryotic cells use guided search to coordinately control dispersed genetic elements. Argonaute proteins and their small RNA cofactors engage nascent RNAs and chromatin-associated proteins to direct transcriptional silencing. The small ubiquitin-like modifier (SUMO) has been shown to promote the formation and maintenance of silent chromatin (called heterochromatin) in yeast, plants, and animals. Here, we show that Argonaute-directed transcriptional silencing in Caenorhabditis elegans requires SUMOylation of the type 1 histone deacetylase HDA-1. Our findings suggest how SUMOylation promotes the association of HDAC1 with chromatin remodeling factors and with a nuclear Argonaute to initiate de novo heterochromatin silencing.

2020 ◽  
Author(s):  
Heesun Kim ◽  
Yue-He Ding ◽  
Gangming Zhang ◽  
Yong-Hong Yan ◽  
Darryl Conte ◽  
...  

SUMMARYEukaryotic cells use guided search to coordinately control dispersed genetic elements. The transitive effectors of these mechanisms, Argonaute proteins and their small-RNA co-factors, engage nascent RNAs and chromatin-associated proteins to direct transcriptional silencing. The small ubiquitin-like modifier (SUMO) has been shown to promote the induction and maintenance of silent chromatin (called heterochromatin) in yeast, plants, and animals. Here we show that Argonaute-directed transcriptional silencing in C. elegans requires SUMOylation of the type 1 histone deacetylase HDA-1. SUMOylation of HDA-1 promotes interactions with components of the nucleosome remodeling and deacetylase (NuRD) complex and with the nuclear Argonaute HRDE-1/WAGO-9. Our findings suggest how HDAC1 SUMOylation promotes the association of HDAC and other chromatin remodeling factors with a nuclear Argonaute in order to initiate de novo heterochromatin silencing.


2020 ◽  
Author(s):  
Jessica N. Clark ◽  
Gaurav Prajapati ◽  
Fermina Aldaco ◽  
Thomas J. Sokolich ◽  
Steven Keung ◽  
...  

AbstractThe activation of C. elegans spermatids to crawling spermatozoa is affected by a number of genes including spe-47. Here, we investigate a paralog to spe-47: spe-50, which has a highly conserved sequence and expression, but which is not functionally redundant to spe-47. Phylogenetic analysis indicates that the duplication event that produced the paralogs occurred prior to the radiation of the Caenorhabditis species included in the analysis, allowing a long period for the paralogs to diverge in function. Furthermore, we observed that knockout mutations in both genes, either alone or together, have little effect on sperm function. However, hermaphrodites harboring both knockout mutations combined with a third mutation in the him-8 gene are nearly self-sterile due to a sperm defect, even though they have numerous apparently normal sperm within their spermathecae. We suggest that the sperm in these triple mutants are defective in fusing with oocytes, and that the effect of the him-8 mutation is due to its role in chromatin remodeling.


2005 ◽  
Vol 169 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Alan J. Tackett ◽  
David J. Dilworth ◽  
Megan J. Davey ◽  
Michael O'Donnell ◽  
John D. Aitchison ◽  
...  

We have dissected specialized assemblies on the Saccharomyces cerevisiae genome that help define and preserve the boundaries that separate silent and active chromatin. These assemblies contain characteristic stretches of DNA that flank particular regions of silent chromatin, as well as five distinctively modified histones and a set of protein complexes. The complexes consist of at least 15 chromatin-associated proteins, including DNA pol ε, the Isw2-Itc1 and Top2 chromatin remodeling proteins, the Sas3-Spt16 chromatin modifying complex, and Yta7, a bromodomain-containing AAA ATPase. We show that these complexes are important for the faithful maintenance of an established boundary, as disruption of the complexes results in specific, anomalous alterations of the silent and active epigenetic states.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Wen Xu ◽  
Lijiang Long ◽  
Yuehui Zhao ◽  
Lewis Stevens ◽  
Irene Felipe ◽  
...  

Genes can encode multiple isoforms, broadening their functions and providing a molecular substrate to evolve phenotypic diversity. Evolution of isoform function is a potential route to adapt to new environments. Here we show that de novo, beneficial alleles in the nurf-1 gene became fixed in two laboratory lineages of C. elegans after isolation from the wild in 1951, before methods of cryopreservation were developed. nurf-1 encodes an ortholog of BPTF, a large (>300 kD) multidomain subunit of the NURF chromatin remodeling complex. Using CRISPR-Cas9 genome editing and transgenic rescue, we demonstrate that in C. elegans, nurf-1 has split into two, largely non-overlapping isoforms (NURF-1.D and NURF-1.B, which we call Yin and Yang, respectively) that share only two of 26 exons. Both isoforms are essential for normal gametogenesis but have opposite effects on male/female gamete differentiation. Reproduction in hermaphrodites, which involves production of both sperm and oocytes, requires a balance of these opposing Yin and Yang isoforms. Transgenic rescue and genetic position of the fixed mutations suggest that different isoforms are modified in each laboratory strain. In a related clade of Caenorhabditis nematodes, the shared exons have duplicated, resulting in the split of the Yin and Yang isoforms into separate genes, each containing approximately 200 amino acids of duplicated sequence that has undergone accelerated protein evolution following the duplication. Associated with this duplication event is the loss of two additional nurf-1 transcripts, including the long-form transcript and a newly identified, highly expressed transcript encoded by the duplicated exons. We propose these lost transcripts are non-functional side products necessary to transcribe the Yin and Yang transcripts in the same cells. Our work demonstrates how gene sharing, through the production of multiple isoforms, can precede the creation of new, independent genes.


2019 ◽  
Author(s):  
Wen Xu ◽  
Lijiang Long ◽  
Yuehui Zhao ◽  
Lewis Stevens ◽  
Ronald E. Ellis ◽  
...  

AbstractGenes can encode multiple isoforms, broadening their functions and providing a molecular substrate to evolve phenotypic diversity. Evolution of isoform function is a potential route to adapt to new environments. Here we show that de novo, beneficial alleles in the nurf-1 gene fixed in two laboratory strains of C. elegans after isolation from the wild in 1951, before methods of cryopreservation were developed. nurf-1 encodes an ortholog of BPTF, a large (>300kD) multidomain subunit of the NURF chromatin remodeling complex. Using CRISPR-Cas9 genome editing and transgenic rescue, we demonstrate that in C. elegans, nurf-1 has split into two, largely non-overlapping isoforms (NURF-1.B and NURF-1.D, which we call Yin and Yang) that share only two of 26 exons. Both isoforms are essential for normal gametogenesis but have opposite effects on male/female gamete differentiation. Reproduction in hermaphrodites, which involves production of both sperm and oocytes, requires a balance of these opposing Yin and Yang isoforms. Transgenic rescue and genetic position of the fixed mutations suggest that different isoforms are modified in each laboratory strain. In a related clade of Caenorhabditis nematodes, the shared exons have duplicated, resulting in the split of the Yin and Yang isoforms into separate genes, each containing approximately 200 amino acids of duplicated sequence that has undergone accelerated protein evolution following the duplication. Associated with this duplication event is the loss of two additional nurf-1 transcripts, including the long-form transcript and a newly identified, highly expressed transcript encoded by the duplicated exons. We propose these lost transcripts are non-functional biproducts necessary to transcribe the Yin and Yang transcripts in the same cells. Our work suggests that evolution of nurf-1 isoforms in nematodes creates adaptive conflict that can be resolved by the creation of new, independent genes.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Dominic Scaglioni ◽  
Francesco Catapano ◽  
Matthew Ellis ◽  
Silvia Torelli ◽  
Darren Chambers ◽  
...  

AbstractDuring the last decade, multiple clinical trials for Duchenne muscular dystrophy (DMD) have focused on the induction of dystrophin expression using different strategies. Many of these trials have reported a clear increase in dystrophin protein following treatment. However, the low levels of the induced dystrophin protein have raised questions on its functionality. In our present study, using an unbiased, high-throughput digital image analysis platform, we assessed markers of regeneration and levels of dystrophin associated protein via immunofluorescent analysis of whole muscle sections in 25 DMD boys who received 48-weeks treatment with exon 53 skipping morpholino antisense oligonucleotide (PMO) golodirsen. We demonstrate that the de novo dystrophin induced by exon skipping with PMO golodirsen is capable of conferring a histological benefit in treated patients with an increase in dystrophin associated proteins at the dystrophin positive regions of the sarcolemma in post-treatment biopsies. Although 48 weeks treatment with golodirsen did not result in a significant change in the levels of fetal/developmental myosins for the entire cohort, there was a significant negative correlation between the amount of dystrophin and levels of regeneration observed in different biopsy samples. Our results provide, for the first time, evidence of functionality of induced dystrophin following successful therapeutic intervention in the human.


1986 ◽  
Vol 103 (1) ◽  
pp. 23-31 ◽  
Author(s):  
E J Aamodt ◽  
J G Culotti

The nematode Caenorhabditis elegans should be an excellent model system in which to study the role of microtubules in mitosis, embryogenesis, morphogenesis, and nerve function. It may be studied by the use of biochemical, genetic, molecular biological, and cell biological approaches. We have purified microtubules and microtubule-associated proteins (MAPs) from C. elegans by the use of the anti-tumor drug taxol (Vallee, R. B., 1982, J. Cell Biol., 92:435-44). Approximately 0.2 mg of microtubules and 0.03 mg of MAPs were isolated from each gram of C. elegans. The C. elegans microtubules were smaller in diameter than bovine microtubules assembled in vitro in the same buffer. They contained primarily 9-11 protofilaments, while the bovine microtubules contained 13 protofilaments. The principal MAP had an apparent molecular weight of 32,000 and the minor MAPs were 30,000, 45,000, 47,000, 50,000, 57,000, and 100,000-110,000 mol wt as determined by SDS-gel electrophoresis. The microtubules were observed, by electron microscopy of negatively stained preparations, to be connected by stretches of highly periodic cross-links. The cross-links connected the adjacent protofilaments of aligned microtubules, and occurred at a frequency of one cross-link every 7.7 +/- 0.9 nm, or one cross-link per tubulin dimer along the protofilament. The cross-links were removed when the MAPs were extracted from the microtubules with 0.4 M NaCl. The cross-links then re-formed when the microtubules and the MAPs were recombined in a low salt buffer. These results strongly suggest that the cross-links are composed of MAPs.


2011 ◽  
Vol 39 (7) ◽  
pp. 1294-1302 ◽  
Author(s):  
Hanneke G. M. Wittgen ◽  
Jeroen J. M. W. van den Heuvel ◽  
Petra H. H. van den Broek ◽  
Heike Dinter-Heidorn ◽  
Jan B. Koenderink ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document