scholarly journals An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Pooja Pandey ◽  
Alexandre Y Leary ◽  
Yasin Tumtas ◽  
Zachary Savage ◽  
Bayantes Dagvadorj ◽  
...  

Eukaryotic cells deploy autophagy to eliminate invading microbes. In turn, pathogens have evolved effector proteins to counteract antimicrobial autophagy. How adapted pathogens co-opt autophagy for their own benefit is poorly understood. The Irish famine pathogen Phytophthora infestans secretes the effector protein PexRD54 that selectively activates an unknown plant autophagy pathway that antagonizes antimicrobial autophagy at the pathogen interface. Here, we show that PexRD54 induces autophagosome formation by bridging vesicles decorated by the small GTPase Rab8a with autophagic compartments labeled by the core autophagy protein ATG8CL. Rab8a is required for pathogen-triggered and starvation-induced but not antimicrobial autophagy, revealing specific trafficking pathways underpin selective autophagy. By subverting Rab8a-mediated vesicle trafficking, PexRD54 utilizes lipid droplets to facilitate biogenesis of autophagosomes diverted to pathogen feeding sites. Altogether, we show that PexRD54 mimics starvation-induced autophagy to subvert endomembrane trafficking at the host-pathogen interface, revealing how effectors bridge distinct host compartments to expedite colonization.

Author(s):  
Pooja Pandey ◽  
Alexandre Y Leary ◽  
Yasin Tümtas ◽  
Zachary Savage ◽  
Bayantes Dagvadorj ◽  
...  

SummaryEukaryotic cells deploy autophagy to eliminate invading microbes. In turn, pathogens have evolved effector proteins to counteract antimicrobial autophagy. How and why adapted pathogens co-opt autophagy for their own benefit is poorly understood. The Irish famine pathogen Phythophthora infestans secretes the effector protein PexRD54 that selectively activates an unknown plant autophagy pathway, while antagonizing antimicrobial autophagy. Here we show that PexRD54 induces autophagosome formation by bridging small GTPase Rab8a-decorated vesicles with autophagic compartments labelled by the core autophagy protein ATG8CL. Rab8a is required for pathogen-triggered and starvation-induced but not antimicrobial autophagy, revealing that specific trafficking pathways underpin selective autophagy. We discovered that Rab8a contributes to basal immunity against P. infestans, but PexRD54 diverts a sub-population of Rab8a vesicles to lipid droplets that associate with autophagosomes. These are then diverted towards pathogen feeding structures that are accommodated within the host cells. We propose that PexRD54 mimics starvation-induced autophagy by channeling host endomembrane trafficking towards the pathogen interface possibly to acquire nutrients. This work reveals that effectors can interconnect independent host compartments to stimulate complex cellular processes that benefit the pathogen.Graphical abstract


mBio ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
Lara J. Kohler ◽  
Shawna R. Reed ◽  
Shireen A. Sarraf ◽  
David D. Arteaga ◽  
Hayley J. Newton ◽  
...  

ABSTRACT Coxiella burnetii replicates in an acidified lysosome-derived vacuole. Biogenesis of the Coxiella -containing vacuole (CCV) requires bacterial effector proteins delivered into host cells by the Dot/Icm secretion system. Genetic and cell biological analysis revealed that an effector protein called Cig2 promotes constitutive fusion of autophagosomes with the CCV to maintain this compartment in an autolysosomal stage of maturation. This distinguishes the CCV from other pathogen-containing vacuoles that are targeted by the host autophagy pathway, which typically confers host resistance to infection by delivering the pathogen to a toxic lysosomal environment. By maintaining the CCV in an autolysosomal stage of maturation, Cig2 enabled CCV homotypic fusion and enhanced bacterial virulence in the Galleria mellonella (wax moth) model of infection by a mechanism that decreases host tolerance. Thus, C. burnetii residence in an autolysosomal organelle alters host tolerance of infection, which indicates that Cig2-dependent manipulation of a lysosome-derived vacuole influences the host response to infection. IMPORTANCE Coxiella burnetii is an obligate, intracellular bacterial pathogen that replicates inside a unique, lysosome-like compartment called the Coxiella -containing vacuole (CCV). Over 130 bacterial effector proteins are delivered into the host cell cytosol by the C. burnetii Dot/Icm type IV secretion system. Although the Dot/Icm system is essential for pathogenesis, the functions of most effectors remain unknown. Here we show that the effector protein Cig2 is essential for converting the CCV to an organelle that is similar to the autolysosome. Cig2 function promotes constitutive fusion between the CCV and autophagosomes generated by selective autophagy. Cig2-directed biogenesis of an autolysosomal vacuole is essential for the unique fusogenic properties of the CCV and for virulence in an animal model of disease. This work highlights how bacterial subversion of the host autophagy pathway can influence the cell biological properties of the CCV and influence the host response to infection.


2020 ◽  
Vol 88 (8) ◽  
Author(s):  
Titilayo O. Omotade ◽  
Craig R. Roy

ABSTRACT Xenophagy targets intracellular pathogens for destruction by the host autophagy pathway. Ubiquitin chains are conjugated to xenophagic targets and recruit multiple autophagy adaptors. The intracellular pathogen Legionella pneumophila resides in a vacuole that is ubiquitinated; however, this pathogen avoids xenophagic detection. Here, the mechanisms by which L. pneumophila can prevent the host xenophagy pathway from targeting the vacuole in which it resides were examined. Ubiquitin-labeled vacuoles containing L. pneumophila failed to recruit autophagy adaptors by a process that was independent of RavZ function. Coinfection studies were conducted using a strain of Listeria monocytogenes that served as a robust xenophagic target. Legionella pneumophila infection blocked xenophagic targeting of L. monocytogenes by a RavZ-dependent mechanism. Importantly, when coinfection studies were conducted with a RavZ-deficient strain of L. pneumophila, L. monocytogenes was targeted by the host xenophagy system but vacuoles containing L. pneumophila avoided targeting. Enhanced adaptor recruitment to the vacuole was observed by using a strain of L. pneumophila in which all of the effector proteins in the SidE family were deleted; however, this strain was still not targeted by the host autophagy pathway. Thus, there are at least two pathways by which L. pneumophila can disrupt xenophagic targeting of the vacuole in which it resides. One mechanism involves global disruption of the host autophagy machinery by the effector protein RavZ. A second cis-acting mechanism prevents the binding of autophagy adaptors to the ubiquitin-decorated surface of the L. pneumophila-containing vacuole.


2021 ◽  
Vol 9 (1) ◽  
pp. 140
Author(s):  
Ruying Wang ◽  
Simin Luo ◽  
Bruce B. Clarke ◽  
Faith C. Belanger

Strong creeping red fescue (Festuca rubra subsp. rubra) is a commercially important low-maintenance turfgrass and is often naturally infected with the fungal endophyte Epichloë festucae. Epichloë spp. are endophytes of several cool-season grass species, often conferring insect resistance to the grass hosts due to the production of toxic alkaloids. In addition to insect resistance, a unique feature of the strong creeping red fescue/E. festucae symbiosis is the endophyte-mediated disease resistance to the fungal pathogen Clarireedia jacksonii, the causal agent of dollar spot disease. Such disease resistance is not a general feature of other grass/ Epichloë interactions. E. festucae isolates infecting red fescue have an antifungal protein gene Efe-afpA, whereas most other Epichloë spp. do not have a similar gene. The uniqueness of this gene suggests it may, therefore, be a component of the unique disease resistance seen in endophyte-infected red fescue. Here, we report the generation of CRISPR-Cas9 Efe-afpA gene knockouts with the goal of determining if absence of the protein in endophyte-infected Festuca rubra leads to disease susceptibility. However, it was not possible to infect plants with the knockout isolates, although infection was possible with the wild type E. festucae and with complemented isolates. This raises the interesting possibility that, in addition to having antifungal activity, the protein is required for the symbiotic interaction. The antifungal protein is a small secreted protein with high expression in planta relative to its expression in culture, all characteristics consistent with effector proteins. If Efe-AfpA is an effector protein it must be specific to certain interactions, since most Epichloë spp. do not have such a gene in their genomes.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Carrie L. Shaffer ◽  
James A. D. Good ◽  
Santosh Kumar ◽  
K. Syam Krishnan ◽  
Jennifer A. Gaddy ◽  
...  

ABSTRACT Bacteria utilize complex type IV secretion systems (T4SSs) to translocate diverse effector proteins or DNA into target cells. Despite the importance of T4SSs in bacterial pathogenesis, the mechanism by which these translocation machineries deliver cargo across the bacterial envelope remains poorly understood, and very few studies have investigated the use of synthetic molecules to disrupt T4SS-mediated transport. Here, we describe two synthetic small molecules (C10 and KSK85) that disrupt T4SS-dependent processes in multiple bacterial pathogens. Helicobacter pylori exploits a pilus appendage associated with the cag T4SS to inject an oncogenic effector protein (CagA) and peptidoglycan into gastric epithelial cells. In H. pylori , KSK85 impedes biogenesis of the pilus appendage associated with the cag T4SS, while C10 disrupts cag T4SS activity without perturbing pilus assembly. In addition to the effects in H. pylori , we demonstrate that these compounds disrupt interbacterial DNA transfer by conjugative T4SSs in Escherichia coli and impede vir T4SS-mediated DNA delivery by Agrobacterium tumefaciens in a plant model of infection. Of note, C10 effectively disarmed dissemination of a derepressed IncF plasmid into a recipient bacterial population, thus demonstrating the potential of these compounds in mitigating the spread of antibiotic resistance determinants driven by conjugation. To our knowledge, this study is the first report of synthetic small molecules that impair delivery of both effector protein and DNA cargos by diverse T4SSs. IMPORTANCE Many human and plant pathogens utilize complex nanomachines called type IV secretion systems (T4SSs) to transport proteins and DNA to target cells. In addition to delivery of harmful effector proteins into target cells, T4SSs can disseminate genetic determinants that confer antibiotic resistance among bacterial populations. In this study, we sought to identify compounds that disrupt T4SS-mediated processes. Using the human gastric pathogen H. pylori as a model system, we identified and characterized two small molecules that prevent transfer of an oncogenic effector protein to host cells. We discovered that these small molecules also prevented the spread of antibiotic resistance plasmids in E. coli populations and diminished the transfer of tumor-inducing DNA from the plant pathogen A. tumefaciens to target cells. Thus, these compounds are versatile molecular tools that can be used to study and disarm these important bacterial machines.


2000 ◽  
Vol 11 (8) ◽  
pp. 2673-2689 ◽  
Author(s):  
Anjon Audhya ◽  
Michelangelo Foti ◽  
Scott D. Emr

The yeast Saccharomyces cerevisiae possesses two genes that encode phosphatidylinositol (PtdIns) 4-kinases,STT4 and PIK1. Both gene products phosphorylate PtdIns at the D-4 position of the inositol ring to generate PtdIns(4)P, which plays an essential role in yeast viability because deletion of either STT4 orPIK1 is lethal. Furthermore, although both enzymes have the same biochemical activity, increased expression of either kinase cannot compensate for the loss of the other, suggesting that these kinases regulate distinct intracellular functions, each of which is required for yeast cell growth. By the construction of temperature-conditional single and double mutants, we have found that Stt4p activity is required for the maintenance of vacuole morphology, cell wall integrity, and actin cytoskeleton organization. In contrast, Pik1p is essential for normal secretion, Golgi and vacuole membrane dynamics, and endocytosis. Strikingly,pik1tscells exhibit a rapid defect in secretion of Golgi-modified secretory pathway cargos, Hsp150p and invertase, whereas stt4tscells exhibit no detectable secretory defects. Both single mutants reduce PtdIns(4)P by ∼50%; however,stt4ts/pik1tsdouble mutant cells produce more than 10-fold less PtdIns(4)P as well as PtdIns(4,5)P2. The aberrant Golgi morphology found in pik1tsmutants is strikingly similar to that found in cells lacking the function of Arf1p, a small GTPase that is known to regulate multiple membrane trafficking events throughout the cell. Consistent with this observation, arf1 mutants exhibit reduced PtdIns(4)P levels. In contrast, diminished levels of PtdIns(4)P observed in stt4tscells at restrictive temperature result in a dramatic change in vacuole size compared with pik1tscells and persistent actin delocalization. Based on these results, we propose that Stt4p and Pik1p act as the major, if not the only, PtdIns 4-kinases in yeast and produce distinct pools of PtdIns(4)P and PtdIns(4,5)P2that act on different intracellular membranes to recruit or activate as yet uncharacterized effector proteins.


2021 ◽  
Author(s):  
Luying Liu ◽  
Craig R. Roy

Legionella pneumophila is the causative agent of Legionnaires’ Disease and is capable replicating inside phagocytic cells such as mammalian macrophages. The Dot/Icm type IV secretion system is a L. pneumophila virulence factor that is essential for successful intracellular replication. During infection, L. pneumophila builds a replication permissive vacuole by recruiting multiple host molecules and hijacking host cellular signaling pathways, a process mediated by the coordinated functions of multiple Dot/Icm effector proteins. RavY is a predicted Dot/Icm effector protein found to be important for optimal L. pneumophila replication inside host cells. Here, we demonstrate that RavY is a Dot/Icm-translocated effector protein that is dispensable for axenic replication of L. pneumophila , but critical for optimal intracellular replication of the bacteria. RavY is not required for avoidance of endosomal maturation, nor does RavY contribute to the recruitment of host molecules found on replication-permissive vacuoles, such as ubiquitin, RAB1a, and RTN4. Vacuoles containing L. pneumophila ravY mutants promote intracellular survival but limit replication. The replication defect of the L. pneumophila ravY mutant was complemented when the mutant was in the same vacuole as wild type L. pneumophila . Thus, RavY is an effector that is essential for promoting intracellular replication of L. pneumophila once the specialized vacuole has been established.


2017 ◽  
Vol 30 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Matthew S. Nelson ◽  
Chan Lan Chun ◽  
Michael J. Sadowsky

In this study, we investigated genetic elements of the type IV secretion system (T4SS) found in Sinorhizobium spp. and the role they play in symbiosis. Sinorhizobium meliloti and S. medicae each contain a putative T4SS similar to that used by Agrobacterium tumefaciens during pathogenesis. The Cre reporter assay for translocation system was used to validate potential effector proteins. Both S. meliloti and S. medicae contained the effector protein TfeA, which was translocated into the host plant. Sequence analysis revealed the presence of a nod box involved in transcriptional activation of symbiosis-related genes, upstream of the transcriptional regulator (virG) in the Sinorhizobium T4SS. Replicate quantitative reverse transcription-polymerase chain reaction analyses indicated that luteolin, released by roots and seeds of Medicago truncatula, upregulated transcription of tfeA and virG. Mutations in the T4SS apparatus or tfeA alone resulted in reduced numbers of nodules formed on M. truncatula genotypes. In addition, S. meliloti KH46c, which contains a deletion in the T4SS, was less competitive for nodule formation when coinoculated with an equal number of cells of the wild-type strain. To our knowledge, TfeA is the first T4SS effector protein identified in Sinorhizobium spp. Our results indicate that Sinorhizobium i) uses a T4SS during initiation of symbiosis with Medicago spp., and ii) alters Medicago cells in planta during symbiosis. This study also offers additional bioinformatic evidence that several different rhizobial species may use the T4SS in symbiosis with other legumes.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
A. Leoni Swart ◽  
Bernhard Steiner ◽  
Laura Gomez-Valero ◽  
Sabina Schütz ◽  
Mandy Hannemann ◽  
...  

ABSTRACT Legionella pneumophila governs its interactions with host cells by secreting >300 different “effector” proteins. Some of these effectors contain eukaryotic domains such as the RCC1 (regulator of chromosome condensation 1) repeats promoting the activation of the small GTPase Ran. In this report, we reveal a conserved pattern of L. pneumophila RCC1 repeat genes, which are distributed in two main clusters of strains. Accordingly, strain Philadelphia-1 contains two RCC1 genes implicated in bacterial virulence, legG1 (Legionella eukaryotic gene 1), and ppgA, while strain Paris contains only one, pieG. The RCC1 repeat effectors localize to different cellular compartments and bind distinct components of the Ran GTPase cycle, including Ran modulators and the small GTPase itself, and yet they all promote the activation of Ran. The pieG gene spans the corresponding open reading frames of legG1 and a separate adjacent upstream gene, lpg1975. legG1 and lpg1975 are fused upon addition of a single nucleotide to encode a protein that adopts the binding specificity of PieG. Thus, a point mutation in pieG splits the gene, altering the effector target. These results indicate that divergent evolution of RCC1 repeat effectors defines the Ran GTPase cycle targets and that modulation of different components of the cycle might fine-tune Ran activation during Legionella infection. IMPORTANCE Legionella pneumophila is a ubiquitous environmental bacterium which, upon inhalation, causes a life-threatening pneumonia termed Legionnaires’ disease. The opportunistic pathogen grows in amoebae and macrophages by employing a “type IV” secretion system, which secretes more than 300 different “effector” proteins into the host cell, where they subvert pivotal processes. The function of many of these effector proteins is unknown, and their evolution has not been studied. L. pneumophila RCC1 repeat effectors target the small GTPase Ran, a molecular switch implicated in different cellular processes such as nucleocytoplasmic transport and microtubule cytoskeleton dynamics. We provide evidence that one or more RCC1 repeat genes are distributed in two main clusters of L. pneumophila strains and have divergently evolved to target different components of the Ran GTPase activation cycle at different subcellular sites. Thus, L. pneumophila employs a sophisticated strategy to subvert host cell Ran GTPase during infection.


Sign in / Sign up

Export Citation Format

Share Document