scholarly journals Quantitative control of noise in mammalian gene expression by dynamic histone regulation

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Deng Tan ◽  
Rui Chen ◽  
Yuejian Mo ◽  
Shu Gu ◽  
Jiao Ma ◽  
...  

Fluctuation ('noise') in gene expression is critical for mammalian cellular processes. Numerous mechanisms contribute to its origins, yet the mechanisms behind large fluctuations that are induced by single transcriptional activators remain elusive. Here, we probed putative mechanisms by studying the dynamic regulation of transcriptional activator binding, histone regulator inhibitors, chromatin accessibility, and levels of mRNAs and proteins in single cells. Using a light-induced expression system, we showed that the transcriptional activator could form an interplay with dual functional co-activator/histone acetyltransferases CBP/p300. This interplay resulted in substantial heterogeneity in H3K27ac, chromatin accessibility, and transcription. Simultaneous attenuation of CBP/p300 and HDAC4/5 reduced heterogeneity in the expression of endogenous genes, suggesting that this mechanism is universal. We further found that the noise was reduced by pulse-wide modulation of transcriptional activator binding possibly as a result of alternating the epigenetic states. Our findings suggest a mechanism for the modulation of noise in synthetic and endogenous gene expression systems.

2020 ◽  
Author(s):  
Deng Tan ◽  
Rui Chen ◽  
Yuejian Mo ◽  
Wei Xu ◽  
Xibin Lu ◽  
...  

AbstractFluctuation (‘noise’) in gene expression is critical for mammalian cellular processes. Numerous mechanisms contribute to its origins, yet large noises induced by single transcriptional activator species remain to be experimentally understood. Here, we combined the dynamic regulation of transcriptional activator binding, histone regulator inhibitors, and single-cell quantification of chromatin accessibility, mRNA, and protein to probe putative mechanisms. Using a light-induced expression system, we show that the transcriptional activator forms a positive feedback loop with histone acetyltransferases CBP/p300. It generates epigenetic bistability in H3K27ac, which contributes to large noise. Disable of the positive feedback loop by CBP/p300 and HDAC4/5 inhibitors also reduces heterogeneity in endogenous genes, suggesting a universal mechanism. We showed that the noise was reduced by pulse-wide modulation of transcriptional activator binding due to alternating the system between high and low monostable states. Our findings could provide a mechanism-based approach to modulate noise in synthetic and endogenous gene expressions.


2020 ◽  
Vol 38 (1) ◽  
pp. 397-419
Author(s):  
Michael J. Shapiro ◽  
Virginia Smith Shapiro

T cell development involves stepwise progression through defined stages that give rise to multiple T cell subtypes, and this is accompanied by the establishment of stage-specific gene expression. Changes in chromatin accessibility and chromatin modifications accompany changes in gene expression during T cell development. Chromatin-modifying enzymes that add or reverse covalent modifications to DNA and histones have a critical role in the dynamic regulation of gene expression throughout T cell development. As each chromatin-modifying enzyme has multiple family members that are typically all coexpressed during T cell development, their function is sometimes revealed only when two related enzymes are concurrently deleted. This work has also revealed that the biological effects of these enzymes often involve regulation of a limited set of targets. The growing diversity in the types and sites of modification, as well as the potential for a single enzyme to catalyze multiple modifications, is also highlighted.


2019 ◽  
Vol 3 (11) ◽  
pp. 1900065 ◽  
Author(s):  
Miguel Reyes ◽  
Kianna Billman ◽  
Nir Hacohen ◽  
Paul C. Blainey

Science ◽  
2020 ◽  
Vol 370 (6518) ◽  
pp. eaba7612 ◽  
Author(s):  
Silvia Domcke ◽  
Andrew J. Hill ◽  
Riza M. Daza ◽  
Junyue Cao ◽  
Diana R. O’Day ◽  
...  

The chromatin landscape underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of chromatin accessibility and gene expression in fetal tissues. For chromatin accessibility, we devised a three-level combinatorial indexing assay and applied it to 53 samples representing 15 organs, profiling ~800,000 single cells. We leveraged cell types defined by gene expression to annotate these data and cataloged hundreds of thousands of candidate regulatory elements that exhibit cell type–specific chromatin accessibility. We investigated the properties of lineage-specific transcription factors (such as POU2F1 in neurons), organ-specific specializations of broadly distributed cell types (such as blood and endothelial), and cell type–specific enrichments of complex trait heritability. These data represent a rich resource for the exploration of in vivo human gene regulation in diverse tissues and cell types.


2020 ◽  
Author(s):  
Ying Lei ◽  
Mengnan Cheng ◽  
Zihao Li ◽  
Zhenkun Zhuang ◽  
Liang Wu ◽  
...  

Non-human primates (NHP) provide a unique opportunity to study human neurological diseases, yet detailed characterization of the cell types and transcriptional regulatory features in the NHP brain is lacking. We applied a combinatorial indexing assay, sci-ATAC-seq, as well as single-nuclei RNA-seq, to profile chromatin accessibility in 43,793 single cells and transcriptomics in 11,477 cells, respectively, from prefrontal cortex, primary motor cortex and the primary visual cortex of adult cynomolgus monkey Macaca fascularis. Integrative analysis of these two datasets, resolved regulatory elements and transcription factors that specify cell type distinctions, and discovered area-specific diversity in chromatin accessibility and gene expression within excitatory neurons. We also constructed the dynamic landscape of chromatin accessibility and gene expression of oligodendrocyte maturation to characterize adult remyelination. Furthermore, we identified cell type-specific enrichment of differentially spliced gene isoforms and disease-associated single nucleotide polymorphisms. Our datasets permit integrative exploration of complex regulatory dynamics in macaque brain tissue at single-cell resolution.


Science ◽  
2020 ◽  
Vol 370 (6518) ◽  
pp. eaba7721 ◽  
Author(s):  
Junyue Cao ◽  
Diana R. O’Day ◽  
Hannah A. Pliner ◽  
Paul D. Kingsley ◽  
Mei Deng ◽  
...  

The gene expression program underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of gene expression and chromatin accessibility in fetal tissues. For gene expression, we applied three-level combinatorial indexing to >110 samples representing 15 organs, ultimately profiling ~4 million single cells. We leveraged the literature and other atlases to identify and annotate hundreds of cell types and subtypes, both within and across tissues. Our analyses focused on organ-specific specializations of broadly distributed cell types (such as blood, endothelial, and epithelial), sites of fetal erythropoiesis (which notably included the adrenal gland), and integration with mouse developmental atlases (such as conserved specification of blood cells). These data represent a rich resource for the exploration of in vivo human gene expression in diverse tissues and cell types.


Author(s):  
Eleni P. Mimitou ◽  
Caleb A. Lareau ◽  
Kelvin Y. Chen ◽  
Andre L. Zorzetto-Fernandes ◽  
Yuhan Hao ◽  
...  

2017 ◽  
Author(s):  
Joshua D. Welch ◽  
Alexander J. Hartemink ◽  
Jan F. Prins

AbstractSingle cell genomic techniques promise to yield key insights into the dynamic interplay between gene expression and epigenetic modification. However, the experimental difficulty of performing multiple measurements on the same cell currently limits efforts to combine multiple genomic data sets into a united picture of single cell variation. We show that it is possible to construct cell trajectories, reflecting the changes that occur in a sequential biological process, from single cell ATAC-seq, bisulfite sequencing, and ChIP-seq data. In addition, we present an approach called MATCHER that computationally circumvents the experimental difficulties inherent in performing multiple genomic measurements on a single cell by inferring correspondence between single cell transcriptomic and epigenetic measurements performed on different cells of the same type. MATCHER works by first learning a separate manifold for the trajectory of each kind of genomic data, then aligning the manifolds to infer a shared trajectory in which cells measured using different techniques are directly comparable. Using scM&T-seq data, we confirm that MATCHER accurately predicts true single cell correlations between DNA methylation and gene expression without using known cell correspondence information. We also used MATCHER to infer correlations among gene expression, chromatin accessibility, and histone modifications in single mouse embryonic stem cells. These results reveal the dynamic interplay between epigenetic changes and gene expression underlying the transition from pluripotency to differentiation priming. Our work is a first step toward a united picture of heterogeneous transcriptomic and epigenetic states in single cells.


Sign in / Sign up

Export Citation Format

Share Document