noise in gene expression
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 14)

H-INDEX

16
(FIVE YEARS 4)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Lucy Ham ◽  
Marcel Jackson ◽  
Michael Stumpf

Single-cell expression profiling opens up new vistas on cellular processes. Extensive cell-to-cell variability at the transcriptomic and proteomic level has been one of the stand-out observations. Because most experimental analyses are destructive we only have access to snapshot data of cellular states. This loss of temporal information presents significant challenges for inferring dynamics, as well as causes of cell-to-cell variability. In particular, we typically cannot separate dynamic variability from within cells ('intrinsic noise') from variability across the population ('extrinsic noise'). Here we make this non-identifiability mathematically precise, allowing us to identify new experimental set-ups that can assist in resolving this non-identifiability. We show that multiple generic reporters from the same biochemical pathways (e.g. mRNA and protein) can infer magnitudes of intrinsic and extrinsic transcriptional noise, identifying sources of heterogeneity. Stochastic simulations support our theory, and demonstrate that 'pathway-reporters' compare favourably to the well-known, but often difficult to implement, dual-reporter method.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Deng Tan ◽  
Rui Chen ◽  
Yuejian Mo ◽  
Shu Gu ◽  
Jiao Ma ◽  
...  

Fluctuation ('noise') in gene expression is critical for mammalian cellular processes. Numerous mechanisms contribute to its origins, yet the mechanisms behind large fluctuations that are induced by single transcriptional activators remain elusive. Here, we probed putative mechanisms by studying the dynamic regulation of transcriptional activator binding, histone regulator inhibitors, chromatin accessibility, and levels of mRNAs and proteins in single cells. Using a light-induced expression system, we showed that the transcriptional activator could form an interplay with dual functional co-activator/histone acetyltransferases CBP/p300. This interplay resulted in substantial heterogeneity in H3K27ac, chromatin accessibility, and transcription. Simultaneous attenuation of CBP/p300 and HDAC4/5 reduced heterogeneity in the expression of endogenous genes, suggesting that this mechanism is universal. We further found that the noise was reduced by pulse-wide modulation of transcriptional activator binding possibly as a result of alternating the epigenetic states. Our findings suggest a mechanism for the modulation of noise in synthetic and endogenous gene expression systems.


2021 ◽  
Author(s):  
Lorenzo Gallicchio ◽  
Sam Griffiths-Jones ◽  
Matthew Ronshaugen

MicroRNAs have subtle and combinatorial effects on the expression levels of their targets. Studying the consequences of a single microRNA knockout often proves difficult as many such knockouts exhibit phenotypes only under stress conditions. This has led to the hypothesis that microRNAs frequently act as buffers of noise in gene expression. Observing and understanding buffering effects requires quantitative analysis of microRNA and target expression in single cells. To this end, we have employed single molecule fluorescence in situ hybridization, immunofluorescence, and high-resolution confocal microscopy to investigate the effects of miR-9a loss on the expression of the serine-protease rhomboid in Drosophila melanogaster early embryos. Our single-cell quantitative approach shows that rhomboid mRNA exhibits the same spatial expression pattern in WT and miR-9a knockout embryos, although the number of mRNA molecules per cell is higher when miR-9a is absent. However, the level of rhomboid protein shows a much more dramatic increase in the miR-9a> knockout. Specifically, we see accumulation of rhomboid protein in miR-9a mutants by stage 5, much earlier than in WT. The data therefore show that miR-9a functions in the regulation of rhomboid activity by both inducing mRNA degradation and inhibiting translation in the blastoderm embryo. Temporal regulation of neural proliferation and differentiation in vertebrates by miR-9a is well-established. We suggest that miR-9a family microRNAs are conserved regulators of timing in neurogenic processes. This work shows the power of single-cell quantification as an experimental tool to study phenotypic consequences of microRNA mis-regulation.


2021 ◽  
Author(s):  
Siqi Zhao ◽  
Zachary Pincus ◽  
Barak A Cohen

Genetically identical cells growing in the same environment can have large differences in gene expression. Both locally acting cis-regulatory sequences (CRS) and the regional properties of chromosomal environments influence the noisiness of a gene's expression. Whether or not local CRS and regional chromosomal environments act independently on noise, or whether they interact in complex ways is unknown. To address this question, we measured the expression mean and noise of reporter genes driven by different CRS at multiple chromosomal locations. While a strong power law relationship between mean expression and noise explains ~60% of noise for diverse promoters across chromosomal locations, modeling the residual mean-independent noise suggests that chromosomal environments have strong effects on expression noise by influencing how quickly genes transition from their inactive states to their active states and that the effects of local CRS and regional chromatin on noise are largely independent. Our results support a modular genome in which regional chromatin modifies the inherent relationship between the mean and noise of expression regardless of the identity of the promoter sequence.


2020 ◽  
Vol 48 (16) ◽  
pp. 9406-9413 ◽  
Author(s):  
Tyler Quarton ◽  
Taek Kang ◽  
Vasileios Papakis ◽  
Khai Nguyen ◽  
Chance Nowak ◽  
...  

Abstract Eukaryotic protein synthesis is an inherently stochastic process. This stochasticity stems not only from variations in cell content between cells but also from thermodynamic fluctuations in a single cell. Ultimately, these inherently stochastic processes manifest as noise in gene expression, where even genetically identical cells in the same environment exhibit variation in their protein abundances. In order to elucidate the underlying sources that contribute to gene expression noise, we quantify the contribution of each step within the process of protein synthesis along the central dogma. We uncouple gene expression at the transcriptional, translational, and post-translational level using custom engineered circuits stably integrated in human cells using CRISPR. We provide a generalized framework to approximate intrinsic and extrinsic noise in a population of cells expressing an unbalanced two-reporter system. Our decomposition shows that the majority of intrinsic fluctuations stem from transcription and that coupling the two genes along the central dogma forces the fluctuations to propagate and accumulate along the same path, resulting in increased observed global correlation between the products.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S101-S101
Author(s):  
Nikolay Burnaevskiy ◽  
Bryan Sands ◽  
Soo Yun ◽  
Alexander Mendenhall

Abstract As a major risk factor for a multitude of chronic diseases aging is being increasingly recognized as a necessary therapeutic target for preventive medicine. Yet, despite tremendous progress in our understanding of the genetic determinants of longevity, proximal causes of aging remain incompletely understood. In part, this may be due to a plethora of factors, such as various types of stochastic macromolecular damage that affect individual cells and individual animals. Indeed, recent studies point to an increase of cell-to-cell variability in gene expression within old tissues, supporting the idea that stochastic events contribute to the aging process. Therefore, more single-cell focused studies are needed for a complete understanding of biological aging. Here, we utilized quantitative microscopy for analysis of gene expression in individual aging cells, in vivo in C. elegans. Using transcriptional reporters, fluorescently tagged proteins and a quantitative analytical framework adapted from yeast, we have found that young C. elegans exhibit very little stochastic or signaling noise in gene expression. However, using quantitative microscopy, we directly observed dysregulation of gene expression with age in vivo. Specifically, the stoichiometric ratios of proteins that are tightly regulated among the youthful populace start deviating in a cell autonomous fashion. Importantly, we find that an increase of gene expression variation is a relatively early event in the aging of C. elegans, readily observed before median lifespan. Hence, we suggest that incoherent cell-to-cell variation in gene expression arising with age can be an immediate causal factor for age-related loss of robust tissue function.


2019 ◽  
Author(s):  
Ramin M Farahani ◽  
Saba Rezaei-Lotfi ◽  
Neil Hunter

AbstractThe genomic platform that informs evolution of microRNA cascades remains unknown. Here we capitalized on the recent evolutionary trajectory of hominin-specific miRNA-4673 (Dokumcu et al., 2018) encoded in intron 4 of notch-1 to uncover the identity of one such precursor genomic element and the selective forces acting upon it. The miRNA targets genes that regulate Wnt/β-catenin signalling cascade. Primary sequence of the microRNA and its target region in Wnt modulating genes evolved from homologous signatures mapped to homotypic cis-clusters recognised by TCF3/4 and TFAP2A/B/C families. Integration of homologous TFAP2A/B/C cis-clusters (short range inhibitor of β-catenin (Li and Dashwood, 2004)) into the transcriptional landscape of Wnt cascade genes can reduce noise in gene expression (Blake et al., 2003). Probabilistic adoption of miRNA secondary structure by one such cis-signature in notch-1 reflected selection for superhelical curvature symmetry of precursor DNA to localize a nucleosome that overlapped the latter cis-cluster. By replicating the cis-cluster signature, non-random interactions of the miRNA with key Wnt modulator genes expanded the transcriptional noise buffering capacity via a coherent feed-forward loop mechanism (Hornstein and Shomron, 2006). In consequence, an autonomous transcriptional noise dampener (the cis-cluster/nucleosome) evolved into a post-transcriptional one (the miRNA). The findings suggest a latent potential for remodelling of transcriptional landscape by miRNAs that capitalize on non-random distribution of genomic cis-signatures.


2019 ◽  
Author(s):  
Lucy Ham ◽  
Rowan D. Brackston ◽  
Michael P.H. Stumpf

AbstractNoise in gene expression is one of the hallmarks of life at the molecular scale. Here we derive analytical solutions to a set of models describing the molecular mechanisms underlying transcription of DNA into RNA. Our Ansatz allows us to incorporate the effects of extrinsic noise – encompassing factors external to the transcription of the individual gene – and discuss the ramifications for heterogeneity in gene product abundance that has been widely observed in single cell data. Crucially, we are able to show that heavy-tailed distributions of RNA copy numbers cannot result from the intrinsic stochasticity in gene expression alone, but must instead reflect extrinsic sources of variability.


Sign in / Sign up

Export Citation Format

Share Document