Improved Performance of Highly Scaled AlGaN/GaN High-Electron-Mobility Transistors Using an AlN Back Barrier

2013 ◽  
Vol 6 (5) ◽  
pp. 051201 ◽  
Author(s):  
Xin Kong ◽  
Ke Wei ◽  
Guoguo Liu ◽  
Xinyu Liu ◽  
Cuimei Wang ◽  
...  
2018 ◽  
Vol 58 (2) ◽  
Author(s):  
Vytautas Jakštas ◽  
Justinas Jorudas ◽  
Vytautas Janonis ◽  
Linas Minkevičius ◽  
Irmantas Kašalynas ◽  
...  

This paper reports on the AlGaN/GaN Schottky diodes (SDs) and high-electron-mobility transistors (HEMTs) grown on a semi-insulating SiC substrate. The electronic devices demonstrate an improved performance in comparison with the ones processed on a sapphire substrate. Both the SDs and HEMTs show much smaller leakage current density and a higher ION/IOFF ratio, reaching values down to 3.0±1.2 mA/cm2 and up to 70 dB under the reverse electric field of 340 kV/cm, respectively. The higher thermal conductivity of the SiC substrate leads to the increase of steady current and transconductance, and better thermal management of the HEMT devices. In addition, a successful detection of terahertz (THz) waves with the AlGaN/GaN HEMT is demonstrated at room temperature. These results open further routes for the optimization of THz designs which may result in development of novel plasmonic THz devices.


2015 ◽  
Vol 107 (19) ◽  
pp. 193506 ◽  
Author(s):  
M. Ťapajna ◽  
O. Hilt ◽  
E. Bahat-Treidel ◽  
J. Würfl ◽  
J. Kuzmík

2021 ◽  
pp. 108050
Author(s):  
Maria Glória Caño de Andrade ◽  
Luis Felipe de Oliveira Bergamim ◽  
Braz Baptista Júnior ◽  
Carlos Roberto Nogueira ◽  
Fábio Alex da Silva ◽  
...  

Author(s):  
Yu-Chen Lai ◽  
Yi-Nan Zhong ◽  
Ming-Yan Tsai ◽  
Yue-Ming Hsin

AbstractThis study investigated the gate capacitance and off-state characteristics of 650-V enhancement-mode p-GaN gate AlGaN/GaN high-electron-mobility transistors after various degrees of gate stress bias. A significant change was observed in the on-state capacitance when the gate stress bias was greater than 6 V. The corresponding threshold voltage exhibited a positive shift at low gate stress and a negative shift when the gate stress was greater than 6 V, which agreed with the shift observation from the I–V measurement. Moreover, the off-state leakage current increased significantly after the gate stress exceeded 6 V during the off-state characterization although the devices could be biased up to 1000 V without breakdown. The increase in the off-state leakage current would lead to higher power loss.


Sign in / Sign up

Export Citation Format

Share Document