Cryogenic ferromagnetic patterns with controlled magnetization for superconducting phase-shift elements

2015 ◽  
Vol 54 (4) ◽  
pp. 043101 ◽  
Author(s):  
Soya Taniguchi ◽  
Hiroshi Ito ◽  
Kouta Ishikawa ◽  
Hiroyuki Akaike ◽  
Akira Fujimaki
2017 ◽  
Vol 27 (4) ◽  
pp. 1-4 ◽  
Author(s):  
Soya Taniguchi ◽  
Hiroshi Ito ◽  
Kouta Ishikawa ◽  
Sota Kurokawa ◽  
Masamitsu Tanaka ◽  
...  

Author(s):  
Kenneth H. Downing ◽  
Benjamin M. Siegel

Under the “weak phase object” approximation, the component of the electron wave scattered by an object is phase shifted by π/2 with respect to the unscattered component. This phase shift has been confirmed for thin carbon films by many experiments dealing with image contrast and the contrast transfer theory. There is also an additional phase shift which is a function of the atomic number of the scattering atom. This shift is negligible for light atoms such as carbon, but becomes significant for heavy atoms as used for stains for biological specimens. The light elements are imaged as phase objects, while those atoms scattering with a larger phase shift may be imaged as amplitude objects. There is a great deal of interest in determining the complete object wave, i.e., both the phase and amplitude components of the electron wave leaving the object.


Author(s):  
J. M. Oblak ◽  
B. H. Kear

The “weak-beam” and systematic many-beam techniques are the currently available methods for resolution of closely spaced dislocations or other inhomogeneities imaged through strain contrast. The former is a dark field technique and image intensities are usually very weak. The latter is a bright field technique, but generally use of a high voltage instrument is required. In what follows a bright field method for obtaining enhanced resolution of partial dislocations at 100 KV accelerating potential will be described.A brief discussion of an application will first be given. A study of intermediate temperature creep processes in commercial nickel-base alloys strengthened by the Ll2 Ni3 Al γ precipitate has suggested that partial dislocations such as those labelled 1 and 2 in Fig. 1(a) are in reality composed of two closely spaced a/6 <112> Shockley partials. Stacking fault contrast, when present, tends to obscure resolution of the partials; thus, conditions for resolution must be chosen such that the phase shift at the fault is 0 or a multiple of 2π.


Author(s):  
D. R. Liu ◽  
D. B. Williams

The secondary electron imaging technique in a scanning electron microscope (SEM) has been used first by Millman et al. in 1987 to distinguish between the superconducting phase and the non-superconducting phase of the YBa2Cu3O7-x superconductors. They observed that, if the sample was cooled down below the transition temperature Tc and imaged with secondary electrons, some regions in the image would show dark contrast whereas others show bright contrast. In general, the contrast variation of a SEM image is the variation of the secondary electron yield over a specimen, which in turn results from the change of topography and conductivity over the specimen. Nevertheless, Millman et al. were able to demonstrate with their experimental results that the dominant contrast mechanism should be the conductivity variation and that the regions of dark contrast were the superconducting phase whereas the regions of bright contrast were the non-superconducting phase, because the latter was a poor conductor and consequently, the charge building-up resulted in high secondary electron emission. This observation has since aroused much interest amoung the people in electron microscopy and high Tc superconductivity. The present paper is the preliminary report of our attempt to carry out the secondary electron imaging of this material in a scanning transmission electron microscope (STEM) rather than in a SEM. The advantage of performing secondary electron imaging in a TEM is obvious that, in a TEM, the spatial resolution is higher and many more complementary techniques, e.g, diffraction contrast imaging, phase contrast imaging, electron diffraction and various microanalysis techniques, are available.


Author(s):  
N. Osakabe ◽  
J. Endo ◽  
T. Matsuda ◽  
A. Tonomura

Progress in microscopy such as STM and TEM-TED has revealed surface structures in atomic dimension. REM has been used for the observation of surface dynamical process and surface morphology. Recently developed reflection electron holography, which employes REM optics to measure the phase shift of reflected electron, has been proved to be effective for the observation of surface morphology in high vertical resolution ≃ 0.01 Å.The key to the high sensitivity of the method is best shown by comparing the phase shift generation by surface topography with that in transmission mode. Difference in refractive index between vacuum and material Vo/2E≃10-4 owes the phase shift in transmission mode as shownn Fig. 1( a). While geometrical path difference is created in reflection mode( Fig. 1(b) ), which is measured interferometrically using high energy electron beam of wavelength ≃0.01 Å. Together with the phase amplification technique , the vertivcal resolution is expected to be ≤0.01 Å in an ideal case.


1993 ◽  
Vol 3 (7) ◽  
pp. 1649-1659
Author(s):  
Mohammad A. Tafreshi ◽  
Stefan Csillag ◽  
Zou Wei Yuan ◽  
Christian Bohm ◽  
Elisabeth Lefèvre ◽  
...  

1986 ◽  
Vol 47 (2) ◽  
pp. 175-180 ◽  
Author(s):  
S. Brazovskii ◽  
V. Yakovenko

Sign in / Sign up

Export Citation Format

Share Document