Polarization field effect on the electrical and electronic band characteristics at the interface between metal and strained GaN/InGaN layer

2006 ◽  
Author(s):  
Ja-Soon Jang ◽  
Seong-Ran Jeon ◽  
Min-Chul Jung ◽  
Hyun-Jun Shin ◽  
Hyun Hwi Lee
Nano Letters ◽  
2005 ◽  
Vol 5 (7) ◽  
pp. 1367-1370 ◽  
Author(s):  
Yeonghwan Ahn ◽  
James Dunning ◽  
Jiwoong Park

1966 ◽  
Vol 148 (2) ◽  
pp. 528-529 ◽  
Author(s):  
E. C. McIrvine

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 582 ◽  
Author(s):  
Raymond Hueting

For some years now, the ever continuing dimensional scaling has no longer been considered to be sufficient for the realization of advanced CMOS devices. Alternative approaches, such as employing new materials and introducing new device architectures, appear to be the way to go forward. A currently hot approach is to employ ferroelectric materials for obtaining a positive feedback in the gate control of a switch. This work elaborates on two device architectures based on this approach: the negative-capacitance and the piezoelectric field-effect transistor, i.e., the NC-FET (negative-capacitance field-effect transistor), respectively π -FET. It briefly describes their operation principle and compares those based on earlier reports. For optimal performance, the adopted ferroelectric material in the NC-FET should have a relatively wide polarization-field loop (i.e., “hard” ferroelectric material). Its optimal remnant polarization depends on the NC-FET architecture, although there is some consensus in having a low value for that (e.g., HZO (Hafnium-Zirconate)). π -FET is the piezoelectric coefficient, hence its polarization-field loop should be as high as possible (e.g., PZT (lead-zirconate-titanate)). In summary, literature reports indicate that the NC-FET shows better performance in terms of subthreshold swing and on-current. However, since its operation principle is based on a relatively large change in polarization the maximum speed, unlike in a π -FET, forms a big issue. Therefore, for future low-power CMOS, a hybrid solution is proposed comprising both device architectures on a chip where hard ferroelectric materials with a high piezocoefficient are used.


2007 ◽  
Vol 997 ◽  
Author(s):  
Sang-Hyun Lim ◽  
Alok C Rastogi ◽  
Seshu B Desu

AbstractMetal-Ferroelectric-Oxide-Si (MFEOS) field effect transistor (FET) with ferroelectric polyvinylidene fluoride trifluoroethylene copolymer (PVDF-TrFE) gate for nonvolatile memory application is demonstrated. Memory window ascribed to ferroelectric polarization switching has been quantified by shift of threshold voltage are ~ 4-5V. Non saturating IDS is due to free ionic polarization field. IDS-VDS characteristics of functional FET are realized after AC poling.


Sensor Review ◽  
2019 ◽  
Vol 39 (6) ◽  
pp. 819-827 ◽  
Author(s):  
Saeid Masoumi ◽  
Hassan Hajghassem

Purpose Smart biosensors that can perform sensitive and selective monitoring of target analytes are tremendously valuable for trinitrotoluene (TNT) explosive detection. In this research, the pre-developed sensor was integrated with biological receptors in which they enhanced the sensitivity of the sensor. This is due to conjugated polydiacetylene onto a peptide-based molecular recognition element (Trp-His-Trp) for TNT molecules in graphene field-effect transistors (GR-FETs) as biosensor that is capable of responding to the presence of a TNT target with a colorimetric response. The authors confirmed the efficacy of the receptor while being attached to polydiacetylene (PDA) by observing the binding ability between the Trp-His-Trp and TNT to alter the electronic band structure of the PDA conjugated backbones. The purpose of this paper is to demonstrate a modular system capable of transducing small-molecule TNT binding into a detectable signal. The details of the real-time and selective TNT biosensor have been reported. Design/methodology/approach Following an introduction, this paper describes the way of fabrication GR-FETs with conventional photolithography techniques and the other processes, which is functionalized by the TNT peptide receptors. The authors first determined the essential TNT recognition elements from UV-visible spectrophotometry spectroscopy for PDA sensor unit fabrication. In particular, the blue percentage and the chromic response were used to characterize the polymerization parameter of the conjugated p backbone. A continuous-flow trace vapor source of nitroaromatics (two, four, six-TNT) was designed and evaluated in terms of temperature dependence. The TNT concentration was measured by liquid/gas extraction in acetonitrile using bubbling sequence. The sensor test is performed using a four-point probe and semiconductor analyzer. Finally, brief conclusions are drawn. Findings Because of their unique optical and stimuli-response properties, the polydiacetylene and peptide-based platforms have been explored as an alternative to complex mechanical and electrical sensing systems. Therefore, the authors have used GR-FETs with biological receptor-PDAs as a biosensor for achieving high sensitivity and selectivity that can detect explosive substances such as TNT. The transport property changed compared to that of the field-effect transistors made by intrinsic graphene, that is, the Dirac point position moved from positive Vg to negative Vg, indicating the transition of graphene from p-type to n-type after annealing in TNT, and when the device was tested from RT, the response of the device was found to increase linearly with increasing concentrations. Average shifting rate of the Dirac peak was obtained as 0.1-0.3 V/ppm. The resulting sensors exhibited at the limit ppm sensitivity toward TNT in real-time, with excellent selectivity over various similar aromatic compounds. The biological receptor coating may be useful for the development of sensitive and selective micro and nanoelectronic sensor devices for various other target analytes. Originality/value The detection of illegally transported explosives has become important as the global rise in terrorism subsequent to the events of September 11, 2001, and is at the forefront of current analytical problems. It is essential that a detection method has the selectivity to distinguish among compounds in a mixture of explosives. So, the authors are reporting a potential solution with the designing and manufacturing of electrochemical biosensor using polydiacetylene conjugated with peptide receptors coated on GR-FETs with the colorimetric response for real-time detection of TNT explosives specifically.


2018 ◽  
Vol 115 (34) ◽  
pp. 8511-8516 ◽  
Author(s):  
Shi-Jing Gong ◽  
Cheng Gong ◽  
Yu-Yun Sun ◽  
Wen-Yi Tong ◽  
Chun-Gang Duan ◽  
...  

Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage.


2011 ◽  
Vol 25 (08) ◽  
pp. 511-535 ◽  
Author(s):  
A. DAS ◽  
B. CHAKRABORTY ◽  
A. K. SOOD

This article is a review of our work related to Raman studies of single layer and bilayer graphenes as a function Fermi level shift achieved by electrochemically top gating a field effect transistor. Combining the transport and in situ Raman studies of the field effect devices, a quantitative understanding is obtained of the phonon renormalization due to doping of graphene. Results are discussed in the light of time dependent perturbation theory, with electron phonon coupling parameter as an input from the density functional theory. It is seen that phonons near Γ and K points of the Brillouin zone are renormalized very differently by doping. Further, Γ-phonon renormalization is different in bilayer graphene as compared to single layer, originating from their different electronic band structures near the zone boundary K-point. Thus Raman spectroscopy is not only a powerful probe to characterize the number of layers and their quality in a graphene sample, but also to quantitatively evaluate electron phonon coupling required to understand the performance of graphene devices.


2001 ◽  
Vol 64 (12) ◽  
Author(s):  
Marian Zamfirescu ◽  
Bernard Gil ◽  
Nicolas Grandjean ◽  
Guilllaume Malpuech ◽  
Alexey Kavokin ◽  
...  

Physica ◽  
1954 ◽  
Vol 3 (7-12) ◽  
pp. 967-970
Author(s):  
D JENKINS

Sign in / Sign up

Export Citation Format

Share Document