Low Temperature Processes using Ni-induced Crystallization Technique for Monolithic Three Dimensional Integration

2008 ◽  
Author(s):  
J. H. Park ◽  
M. Tada ◽  
H. Peng ◽  
K. C. Saraswat
2019 ◽  
Vol 16 (10) ◽  
pp. 909-916
Author(s):  
Jin-Hong Park ◽  
Munehiro Tada ◽  
Hyun-Yong Yu ◽  
Duygu Kuzum ◽  
Yeul Na ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 566 ◽  
Author(s):  
M. Akhtar ◽  
Ahmad Umar ◽  
Swati Sood ◽  
InSung Jung ◽  
H. Hegazy ◽  
...  

This paper reports the rapid synthesis, characterization, and photovoltaic and sensing applications of TiO2 nanoflowers prepared by a facile low-temperature solution process. The morphological characterizations clearly reveal the high-density growth of a three-dimensional flower-shaped structure composed of small petal-like rods. The detailed properties confirmed that the synthesized nanoflowers exhibited high crystallinity with anatase phase and possessed an energy bandgap of 3.2 eV. The synthesized TiO2 nanoflowers were utilized as photo-anode and electron-mediating materials to fabricate dye-sensitized solar cell (DSSC) and liquid nitroaniline sensor applications. The fabricated DSSC demonstrated a moderate conversion efficiency of ~3.64% with a maximum incident photon to current efficiency (IPCE) of ~41% at 540 nm. The fabricated liquid nitroaniline sensor demonstrated a good sensitivity of ~268.9 μA mM−1 cm−2 with a low detection limit of 1.05 mM in a short response time of 10 s.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1572
Author(s):  
Baku Nagendra ◽  
Paola Rizzo ◽  
Christophe Daniel ◽  
Lucia Baldino ◽  
Gaetano Guerra

Poly(ʟ-lactide) (PLLA) films, even of high thickness, exhibiting co-crystalline and crystalline α phases with their chain axes preferentially perpendicular to the film plane (c⊥ orientation) have been obtained. This c⊥ orientation, unprecedented for PLLA films, can be achieved by the crystallization of amorphous films as induced by low-temperature sorption of molecules being suitable as guests of PLLA co-crystalline forms, such as N,N-dimethylformamide, cyclopentanone or 1,3-dioxolane. This kind of orientation is shown and quantified by two-dimensional wide-angle X-ray diffraction (2D-WAXD) patterns, as taken with the X-ray beam parallel to the film plane (EDGE patterns), which present all the hk0 arcs centered on the meridian. PLLA α-form films, as obtained by low-temperature guest-induced crystallization, also exhibit high transparency, being not far from those of the starting amorphous films.


2005 ◽  
Vol 89 (1) ◽  
pp. 72-79 ◽  
Author(s):  
P.K. Khanna ◽  
B. Hornbostel ◽  
M. Burgard ◽  
W. Schäfer ◽  
J. Dorner

1995 ◽  
Vol 06 (02) ◽  
pp. 317-373 ◽  
Author(s):  
G. GILDENBLAT ◽  
D. FOTY

We review the modeling of silicon MOS devices in the 10–300 K temperature range with an emphasis on the specifics of low-temperature operation. Recently developed one-dimensional models of long-channel transistors are discussed in connection with experimental determination and verification of the effective channel mobility in a wide temperature range. We also present analytical pseudo-two-dimensional models of short-channel devices which have been proposed for potential use in circuit simulators. Several one-, two-, and three-dimensional numerical models are discussed in order to gain insight into the more subtle details of the low-temperature device physics of MOS transistors and capacitors. Particular attention is paid to freezeout effects which, depending on the device design and the ambient temperature range, may or may not be important for actual device operation. The numerical models are applied to study the characteristic time scale of freezeout transients in the space-charge regions of silicon devices, to the analysis and suppression of delayed turn-off in MOS transistors with compensated channel, and to the temperature dependence of three-dimensional effects in short-channel, narrow-channel MOSFETs.


Sign in / Sign up

Export Citation Format

Share Document