Transient Thermal Analysis of Si-based Solar Cell Using Electrical Junction-Temperature Measurement and Impedance Spectroscopy

2016 ◽  
Author(s):  
Y.H. Chin ◽  
S.J. Wang ◽  
C.H. Hung ◽  
Y.C. Huang ◽  
C.H. Wu ◽  
...  
2016 ◽  
Vol 858 ◽  
pp. 1078-1081 ◽  
Author(s):  
Fumiki Kato ◽  
Hiroshi Nakagawa ◽  
Hiroshi Yamaguchi ◽  
Hiroshi Sato

Transient thermal analysis is a very useful tool for thermal evaluation to realize the stable operation of SiC power modules which are operated at higher temperatures than conventional Si power modules. A transient thermal analysis system to investigate the thermal characteristics of SiC power modules at high temperature is presented. We have found that precise temperature measurement at the initial stage of the junction temperature decay curve is necessary in order to evaluate the thermal resistance and heat capacity of the die attach, since the thermal diffusivity of SiC is larger than that of Si and the temperature distribution of SiC die was considered. Using the proposed transient thermal analysis method, the thermal resistance and heat capacity of the AuGe die attach under the SiC-SBD was successfully evaluated at temperatures up to 250 °C.


1993 ◽  
Vol 103 (1) ◽  
pp. 19-33
Author(s):  
Michael J. Gaeta ◽  
Frederick R. Best

2018 ◽  
Vol 2018 (HiTEC) ◽  
pp. 000028-000031 ◽  
Author(s):  
Fumiki Kato ◽  
Hiroki Takahashi ◽  
Hidekazu Tanisawa ◽  
Kenichi Koui ◽  
Shinji Sato ◽  
...  

Abstract In this paper, we demonstrate that the structural degradation of a silicon carbide (SiC) power module corresponding to thermal cycles can be detected and tracked non-destructively by transient thermal analysis method. The purpose of this evaluation is to analyze the distribution of the thermal resistance in the power module and to identify the structure deterioration part. The power module with SiC-MOSFET were assembled using ZnAl eutectic solder as device under test. The individual thermal resistance of each part such as the SiC-die, the die-attachment, the AMCs, and the baseplate was successfully evaluated by analyzing the structure function graph. A series of thermal cycle test between −40 and 250°C was conducted, and the power modules were evaluated their thermal resistance taken out from thermal cycle test machine at 100, 200, 500 and 1000 cycles. We confirmed the increase in thermal resistance between AMCs and base plate in each thermal cycle. The portion where the thermal resistance increased is in good agreement with the location of the structural defect observed by scanning acoustic tomography (SAT) observation.


Sign in / Sign up

Export Citation Format

Share Document