scholarly journals Sensitivity of Sclerotium cepivorum Causing Garlic White Rot Isolated from Taeahn, Seosan and Goheung Areas to Fungicides

2013 ◽  
Vol 17 (2) ◽  
pp. 133-139
Author(s):  
Hyung Jo Kim ◽  
Woobong Choi ◽  
Heung Tae Kim



AgriPeat ◽  
2019 ◽  
Vol 20 (02) ◽  
pp. 92-98
Author(s):  
Admin Journal

ABSTRACTThis study aims to determine effective management patterns to control Sclerotium rot and to improvepeat soil fertility with the application of the Trichoderma sp + Aspergillus sp consortium.as biologicalagents and P solvents, combined with spacing arrangements in the cultivation of scallion in peatlands.The study used a factorial randomized block design consisting of two factors with four replications.Factor I Application of biological agents consists of: A0 = No biological agents; A1 = Consortium ofTrichoderma sp. + Aspergillus sp; Factor II Plant spacing, consisting of J1 = 20x25 cm; J2 = 25x25cm and J3 = 30x25 cm. The results showed that the interaction treatment of Trichoderma sp. +Aspergillus sp. and spacing of 25x25 cm effectively suppresses the incidence of white rot disease(Sclerotium cepivorum Berk) up to 34.02%, while at a spacing of 20x25 cm with the application ofTrichoderma sp. + Aspergillus sp. produced the highest fresh plant weight of 8.80 kg plot-1 or 24.44tons hectares-1. Increasing the number of leaves is only influenced by a single factor of biologicalagents (23.29%) and spacing of 25x25 cm (19.7%). Application of Trichoderma sp. + Aspergillus sp.can increase the nutrient content of N, P (total and available), K and peat soil organic matter.Consortium of biological agents Trichoderma sp. and Aspergillus sp. indigenous have the potential tobe developed as biological agents and biofertilizers, with optimum spacing can be applied to themanagement of scallion cultivation in peatlands.Key words: Sclerotium cepivorum Berk, scallion, Trichoderma sp. and Aspergillus sp., spacing



2005 ◽  
Vol 130 (2) ◽  
pp. 196-202 ◽  
Author(s):  
Marilyn H.Y. Hovius ◽  
Irwin L. Goldman ◽  
Kirk L. Parkin

Breeders have found field screening for white rot (Sclerotium cepivorum Berk.) resistance in onion (Allium cepa L.) to be unreliable since consistently moderate to high disease levels that significantly differentiate cultivars do not occur over field sites and years. The objective was to determine if differences in onion white rot resistance levels were associated with differing S-alk(en)yl-l-cysteine sulfoxide (ACSO) levels. A collection of onion breeding lines and hybrids were evaluated in field trials at six sites in 1999-2001. High performance liquid chromatography was used to analyze ACSOs in onion plant organs. Four main cysteine-sulfoxides exist in Allium L. species: methyl (MCSO), 2-propenyl (2-PeCSO), 1-propenyl (1-PeCSO), and propyl (PCSO). 1-PeCSO was predominant in onion leaves, bulbs, and roots. 2-PeCSO was found in trace amounts in onion leaves and roots. There was significantly more 2-PeCSO and total ACSO (roots only) and 1-PeCSO (roots and bulbs) in accessions that were more susceptible to white rot in the field trials. This is the first report of significant differences in ACSO contents among white rot susceptible and resistant onions. A covariance analysis was used to determine if the ACSO levels that significantly distinguished among accessions could predict field onion white rot reaction. 1-PeCSO from both roots and bulbs was the best predictor of field disease incidence in field sites that had low, moderate, and high disease levels. Although the ACSO concentrations were not assessed on an individual plant basis, breeders may be able to screen onions for resistance to S. cepivorum by comparing onion root or bulb 1-PeCSO levels based on the results from this research. White rot incidence in the field should be higher in those plants whose roots and bulbs have the highest levels of 1-PeCSO.



2020 ◽  
Vol 12 (12) ◽  
pp. 2491-2507
Author(s):  
Claudio A Valero-Jiménez ◽  
Maikel B F Steentjes ◽  
Jason C Slot ◽  
Xiaoqian Shi-Kunne ◽  
Olga E Scholten ◽  
...  

Abstract Fungi of the genus Botrytis infect >1,400 plant species and cause losses in many crops. Besides the broad host range pathogen Botrytis cinerea, most other species are restricted to a single host. Long-read technology was used to sequence genomes of eight Botrytis species, mostly pathogenic on Allium species, and the related onion white rot fungus, Sclerotium cepivorum. Most assemblies contained <100 contigs, with the Botrytis aclada genome assembled in 16 gapless chromosomes. The core genome and pan-genome of 16 Botrytis species were defined and the secretome, effector, and secondary metabolite repertoires analyzed. Among those genes, none is shared among all Allium pathogens and absent from non-Allium pathogens. The genome of each of the Allium pathogens contains 8–39 predicted effector genes that are unique for that single species, none stood out as potential determinant for host specificity. Chromosome configurations of common ancestors of the genus Botrytis and family Sclerotiniaceae were reconstructed. The genomes of B. cinerea and B. aclada were highly syntenic with only 19 rearrangements between them. Genomes of Allium pathogens were compared with ten other Botrytis species (nonpathogenic on Allium) and with 25 Leotiomycetes for their repertoire of secondary metabolite gene clusters. The pattern was complex, with several clusters displaying patchy distribution. Two clusters involved in the synthesis of phytotoxic metabolites are at distinct genomic locations in different Botrytis species. We provide evidence that the clusters for botcinic acid production in B. cinerea and Botrytis sinoallii were acquired by horizontal transfer from taxa within the same genus.





Sign in / Sign up

Export Citation Format

Share Document