CROSS-SECTIONAL FAILURE CRITERION COMBINED WITH STRAIN-HARDENING DAMAGE MODEL FOR SIMULATION OF THIN-WALLED TEXTILE-REINFORCED CONCRETE SHELLS

Author(s):  
Ehsan Sharei ◽  
Rostislav Chudoba ◽  
Alexander Scholzen
2018 ◽  
Vol 760 ◽  
pp. 158-163 ◽  
Author(s):  
Tomáš Vlach ◽  
Lenka Laiblová ◽  
Michal Ženíšek ◽  
Jakub Řepka ◽  
Petr Hájek

This paper presents a model of small experimental facade panel using four-point bending test. The facade panel with dimensions 100 x 360 mm and thickness approximately 18 mm was slightly reinforced using two layers of impregnated technical fabric from AR-glass roving. The amount of reinforcement in cross-sectional area of the concrete element is small and it is a reason of plastic joints initiation under the loading supports. The purpose of this experiment was validation of all used material parameters from the previous research in the program for nonlinear analysis of concrete and reinforced concrete Atena Engineering. For slightly reinforced concrete elements are monitored parameters better visible especially interaction between reinforcement and used concrete. The load transfer to the concrete element from the testing machine is typically modeled using some small steel plate. This paper shows the difference in results if we insert another flexible plate between the steel plate and the concrete element with a small defined stiffness.


Structures ◽  
2018 ◽  
Vol 15 ◽  
pp. 56-65 ◽  
Author(s):  
Will Hawkins ◽  
John Orr ◽  
Tim Ibell ◽  
Paul Shepherd

2015 ◽  
Vol 16 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Alexander Scholzen ◽  
Rostislav Chudoba ◽  
Josef Hegger

Author(s):  
Евгений Олегович Сысоев ◽  
Комилджон Кахорович Кахоров ◽  
Олег Евгеньевич Сысоев ◽  
Екатерина Викторовна Журавлева

Тонкостенные цилиндрические оболочки, выполненные из железобетона, широко используется в качестве покрытий зданий и сооружений. Тонкостенные оболочки могут перекрывать большие пролёты и создавать большие закрытые помещения без дополнительных опор, обладают оптимальной формой и хорошими технико-экономическими показателями. В настоящее время при проектировании зданий и сооружений не производятся специальные расчёты на возникновение резонансных явлений, отсутствуют расчетные модели и недостаточно экспериментальных данных. При этом тонкостенные оболочки очень чувствительны к внешним воздействиям (ветровые и снеговые нагрузки), вызывающие вынужденные колебания, которые приводят к разрушению конструкции. К примеру, в 2004 г. трагедия в «Трансвааль-парке» г. Москва унесла жизни 28 человек, более 100 получили ранения; в 2010 г. на стадионе в Миннесоте (США) обрушилась одна из секций крыши, завалив трибуну; в 2015 г. авария строящегося резервуара на нефтезаводе в г. Комсомольске-на-Амуре, возникшая из-за колебаний от ветровых нагрузок; в 2015 г. кровля крытого катка (с. Верх-Ирмень Новосибирской обл.) не выдержала совместных ветровых и снеговых нагрузок; в 2017 г. произошел обвал крыши школы в п. Мурино; в 2018 г. деформации крыши строящегося катка г. Истра носили катастрофический характер. Целью теоретических расчетов и проведения экспериментов с железобетонными оболочками с разными модулями упругости заключается в обеспечении надежности при эксплуатации здания и сооружения и исключения аварийных ситуаций, возникающих при резонансных явлениях свободных колебаний оболочек от воздействия внешних сил (нагрузок). В статье приведены результаты экспериментальных исследований по определению спектров вынужденных и свободных колебания, частот и форм колебаний разомкнутых оболочек от внешних воздействий. Рассматривается теоретический расчёт разомкнутой оболочки на основе уравнений теории пологих тонкостенных оболочек с использованием метода Бубнова-Галеркина, с помощью которого определены влияние параметров оболочки на процессы свободного колебания. Получены данные зависимости спектра колебаний от класса бетона - из этих результатов можно сделать вывод, что с увеличением класса бетона уменьшаются средние показатели частот колебания, а первоначальные показатели частот колебаний почти затухают. Thin-walled cylindrical shells made of reinforced concrete are widely used as coatings of buildings and structures. Thin-walled shells can cover large flights and create more closure of the room without additional supports, with optimal shape and good techno-econmic indicators. At present, the design of buildings and structures does not make special calculations for the occurrence of resonance phenomena, absence of design models and insufficient experimental data. At the same time thin-walled shells are very sensitive to external effects (wind and snow loads) causing forced fluctuations, which lead to the destruction of the structure. For example in 2004 tragedy in Transvaal Park in Moscow killed 28 people, more than 100 were injured; in 2010, a roof section collapsed at a stadium in Minnesota, United States, collapsing the podium; in 2015, an accident at the Komsomolsk-on-Amur oil plant under construction caused by fluctuations from wind loads; in 2015, (Top-Irmen of Novosibirsk region) roof of the covered rink failed to withstand joint wind and snow loads; in 2017, the roof of a school in Murino village collapsed; in 2018, the deformation of the roof of the Istra rink under construction was catastrophic. The purpose of theoretical calculations and carrying out excreta with reinforced concrete shells with different modules of elasticity is to ensure reliability during operation of the building and structure, and to avoid accidents, arising resonance phenomena of free oscillations of shells due to external forces (loads). The article presents the results of experimental studies on determination of spectra, forced and free oscillations of reinforced concrete shell with different modules of elasticity. The whole, carrying out research of reinforced concrete shells is determination of frequencies and form of oscillation of open shells due to external effects. The paper considers the theoretical calculation of the open shell based on the equations of the theory of shallow thin-walled shells, using the Bubnov- Galerkin method, by which we determine how the parameters of the shell affect the processes of free oscillation. After the studies, the data of the vibration spector dependence on the concrete class are obtained, with the help of these results it can be concluded that as the concrete class increases, the average values of the oscillation frequencies decrease, and the initial values of the oscillation frequencies almost fade.


2018 ◽  
Vol 08 (04) ◽  
pp. 161-174
Author(s):  
Sandra Gelbrich ◽  
Henrik L. Funke ◽  
Lothar Kroll

2009 ◽  
Vol 69 (11-12) ◽  
pp. 1790-1796 ◽  
Author(s):  
Tine Tysmans ◽  
Sigrid Adriaenssens ◽  
Heidi Cuypers ◽  
Jan Wastiels

2020 ◽  
Vol 53 (6) ◽  
Author(s):  
Philipp Preinstorfer ◽  
Benjamin Kromoser

AbstractSplitting forces due to bond action can lead to the premature failure of reinforced concrete structural components. In earlier research it was mentioned that it is mainly geometrical parameters that play a key role in the distribution and magnitude of the splitting forces in textile-reinforced concrete. However, so far no accurate geometrical characterisation of textile reinforcement has been performed which considers all the relevant properties of the material such as the regularly repeating variation in cross-sectional dimensions. In this paper, four geometrical parameters are introduced which permit a clear geometrical characterisation of fibre strands and allow for the comparison of different types of textile reinforcement. Furthermore, a broad parametric study was carried out for a pull-out test in which the parameters were varied, and the influence of these parameters on the splitting forces occurring in textile-reinforced concrete was visualised. Based on this parametric study, a mechanical model was established, which takes into account experimental data from previous research. This model allows for the calculation of the splitting forces occurring in textile-reinforced concrete when one short fibre strand is pulled out of the concrete.


2019 ◽  
Vol 9 (11) ◽  
pp. 2348 ◽  
Author(s):  
Rostislav Chudoba ◽  
Ehsan Sharei ◽  
Tilo Senckpiel-Peters ◽  
Frank Schladitz

The paper focuses on the specifics of macro-scale modeling of thin-walled textile-reinforced concrete shells. Application of layered shell finite elements requires systematic procedures for identification of material characteristics associated with the individual layers within the cross section. The identification of the material parameters describing the tensile behavior of a composite cross section is done using data obtained from the tensile test. Such test is usually performed only for a reference configurations with a simple layup of fabrics and a chosen thickness. The question is how to derive the strain-hardening response from the tensile test that is relevant for a changed cross-sectional configuration. We describe and discuss scaling and mixture rules that can be used to modify the material parameters for modified cross-sectional layups. The rules are examined in the context of the test results obtained on a shell that was reinforced non-uniformly, with varying types of textile fabrics and varying thickness within the shell surface.


Sign in / Sign up

Export Citation Format

Share Document