SEISMIC BEHAVIOUR OF INNOVATIVE ENERGY DISSIPATION SYSTEMS FUSEIS 1-1

Author(s):  
G. Dougka ◽  
D. Dimakogianni ◽  
I. Vayas ◽  
P. Karydakis
BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5272-5286
Author(s):  
Huifeng Yang ◽  
Chaochao Wang ◽  
Junbin Hu ◽  
Haotian Tao ◽  
Jiwei Liu ◽  
...  

To evaluate the static and seismic behaviour of glulam beam-to-column connections with screwed-in threaded rods, nine specimens grouped in three were tested under both monotonic and reversed cyclic loads. The failure modes, moment resistance, initial rotation stiffness, ductility, and energy dissipation capacity of the developed connections were investigated. The results indicated that the developed beam-to-column connections showed superior structural performance. Furthermore, with the introduction of a steel bracket, the hybrid screwed-in threaded rod connection features larger stiffness, higher load-carrying capacity, remarkable ductility, and better energy dissipation capacity. The main failure modes included the yielding of steel brackets, as well as the yielding or rupture of the threaded rods, which indicated a ductile behaviour. The connection specimens with steel columns showed larger stiffness than those with glulam columns, which is reasonable for the bigger compressive deformation of glulam columns.


2019 ◽  
Vol 26 (1) ◽  
pp. 360-378 ◽  
Author(s):  
Liu Ming ◽  
Yin Shiping ◽  
Chen Wenjie

AbstractThis paper studied the confinement effect of textile layers and the stirrup ratio on the seismic behaviour of TRC-strengthened RC columns using the numerical method. The results showed that the numerical values have good consistency with the experimental. Within the range of 1 to 3 layers of textile, with the increase of the number of textile layers, the peak load, displacement ductility ratio and energy dissipation capacity of the columns increased; however, these parameters only exhibited a limited increase when the textile layers continued to increase. In addition, the textile layers had a slight influence on the rate of the energy dissipation capacity. With the increase of the stirrup ratio, the yield load, peak load and ultimate load of the column did not change significantly, but the ductility coefficient and energy dissipation capacity of the column increased. Furthermore, for a TRC-strengthened column with three layers of textile and a stirrup ratio of 0.34%, the hysteresis loop fullness and the bearing capacity are better than those of a column with two layers of textile and a stirrup ratio of 0.67%. Therefore, it can be seen that TRC could play an efficient constraint role on the column when the stirrup arrangement is less.


Author(s):  
Xiangyong Ni ◽  
Shuangyin Cao ◽  
Hassan Aoude

This study examines the influence of cross-section shape on the seismic behaviour of high-strength steel reinforced concrete shear walls (HSS-RC) designed with Grade HRB 600 MPa reinforcement. As part of the study, two flexure-dominant walls with rectangular and T-shaped cross-sections, are tested under reversed cyclic loading. Seismic performance is evaluated by studying the failure characteristics, hysteretic curves, energy dissipation, ductility and reinforcing bar strains in the two walls. As part of the numerical study, two-dimensional (2D) and three-dimensional (3D) finite element modelling (FEM) are used to predict the seismic response of the rectangular and T-shaped walls, respectively. The test results show that compared to the rectangular wall, the flange in the T-shaped HSS-RC wall increased strength, energy dissipation and stiffness, but decreased ductility. The analytical hysteretic curves calculated using 2D and 3D FEM analyses show good agreement with the experimental test results.


2013 ◽  
Vol 838-841 ◽  
pp. 1145-1148
Author(s):  
Ming Bo Ding ◽  
Xing Chong Chen

In order to study the seismic performance of steel plate reinforcement on gravity piers in railway bridges, a quasi-static test was conducted on the 0.2% steel ratio pier model. Shearing damage on the pier model occurred on the action of horizontal load. Steel-bonded reinforcement was conducted on the damaged model, and comparison and analysis were made based on the failure mode, bearing capacity, ductility, energy dissipation capacity and stiffness degradation.


Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 203
Author(s):  
Giuseppe Santarsiero ◽  
Angelo Masi

This study is devoted to experimentally investigate the seismic behaviour of reinforced concrete (RC) wide beam–column joints equipped with a steel jacketing seismic strengthening solution. To this end, three identical full-scale specimens have been tested under cyclic loading, one in the as-built condition and two after the application of the strengthening solutions. Details of selected solutions are described in the paper along with the experimental results which confirm how the application of simple and feasible steel interventions can effectively improve the seismic capacity of wide beam–column connections in RC frames, especially in terms of lateral load carrying capacity and energy dissipation.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammadamin Azimi ◽  
Azlan Bin Adnan ◽  
Abdul Rahman Bin Mohd Sam ◽  
Mahmood Md Tahir ◽  
Iman Faridmehr ◽  
...  

The seismic performance of RC columns could be significantly improved by continuous spiral reinforcement as a result of its adequate ductility and energy dissipation capacity. Due to post-earthquake brittle failure observations in beam-column connections, the seismic behaviour of such connections could greatly be improved by simultaneous application of this method in both beams and columns. In this study, a new proposed detail for beam to column connection introduced as “twisted opposing rectangular spiral” was experimentally and numerically investigated and its seismic performance was compared against normal rectangular spiral and conventional shear reinforcement systems. In this study, three full scale beam to column connections were first designed in conformance with Eurocode (EC2-04) for low ductility class connections and then tested by quasistatic cyclic loading recommended by ACI Building Code (ACI 318-02). Next, the experimental results were validated by numerical methods. Finally, the results revealed that the new proposed connection could improve the ultimate lateral resistance, ductility, and energy dissipation capacity.


Sign in / Sign up

Export Citation Format

Share Document