scholarly journals Seismic Performance of RC Beam-Column Connections with Continuous Rectangular Spiral Transverse Reinforcements for Low Ductility Classes

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammadamin Azimi ◽  
Azlan Bin Adnan ◽  
Abdul Rahman Bin Mohd Sam ◽  
Mahmood Md Tahir ◽  
Iman Faridmehr ◽  
...  

The seismic performance of RC columns could be significantly improved by continuous spiral reinforcement as a result of its adequate ductility and energy dissipation capacity. Due to post-earthquake brittle failure observations in beam-column connections, the seismic behaviour of such connections could greatly be improved by simultaneous application of this method in both beams and columns. In this study, a new proposed detail for beam to column connection introduced as “twisted opposing rectangular spiral” was experimentally and numerically investigated and its seismic performance was compared against normal rectangular spiral and conventional shear reinforcement systems. In this study, three full scale beam to column connections were first designed in conformance with Eurocode (EC2-04) for low ductility class connections and then tested by quasistatic cyclic loading recommended by ACI Building Code (ACI 318-02). Next, the experimental results were validated by numerical methods. Finally, the results revealed that the new proposed connection could improve the ultimate lateral resistance, ductility, and energy dissipation capacity.

2016 ◽  
Vol 16 (01) ◽  
pp. 1640015 ◽  
Author(s):  
Yun Tian Wu ◽  
Yu Shan Fu ◽  
Chong-Ming Dai

A new type of partially steel tubed concrete (PSTC) column is proposed that is suitable to be used in new high rise reinforced concrete (RC) buildings. Three exterior joint specimens consisting of RC beams and PSTC columns and two exterior RC joint specimens were designed and tested under high axial load and cyclic loading to investigate the joint behavior in terms of failure pattern, hysteresis response, deformation, energy dissipation capacity and degradation of strength and stiffness. Test results indicate that the PSTC column can benefit the performance of the joint in terms of strength, ductility and energy dissipation capacity and can partly compensate for the unfavorable effect induced by slab. The strong column–weak beam mechanism can also be ensured in RC beam to PSTC column joint.


2012 ◽  
Vol 256-259 ◽  
pp. 2079-2084 ◽  
Author(s):  
Tie Cheng Wang ◽  
An Gao ◽  
Hai Long Zhao

The influence of the pile type and the stirrup on the seismic performance was evaluated based on the results of reversed cyclic loading tests on the four prestressed high strength concrete (PHC) piles. It is indicated that the AB-type pile has the better seismic performance than the A-type pile from the results. The bearing capacity does not increase obviously with decreasing of the stirrup spacing and increasing of the stirrup diameter. The degradation of stiffness does not decrease significantly with decreasing of the stirrup spacing and increasing of the stirrup diameter. The energy dissipation capacity is improved with increasing of the stirrup diameter and decreasing of the stirrup spacing.


Author(s):  
Xiangyong Ni ◽  
Shuangyin Cao ◽  
Hassan Aoude

This study examines the influence of cross-section shape on the seismic behaviour of high-strength steel reinforced concrete shear walls (HSS-RC) designed with Grade HRB 600 MPa reinforcement. As part of the study, two flexure-dominant walls with rectangular and T-shaped cross-sections, are tested under reversed cyclic loading. Seismic performance is evaluated by studying the failure characteristics, hysteretic curves, energy dissipation, ductility and reinforcing bar strains in the two walls. As part of the numerical study, two-dimensional (2D) and three-dimensional (3D) finite element modelling (FEM) are used to predict the seismic response of the rectangular and T-shaped walls, respectively. The test results show that compared to the rectangular wall, the flange in the T-shaped HSS-RC wall increased strength, energy dissipation and stiffness, but decreased ductility. The analytical hysteretic curves calculated using 2D and 3D FEM analyses show good agreement with the experimental test results.


2013 ◽  
Vol 302 ◽  
pp. 347-354
Author(s):  
Ze Feng Ma ◽  
Zhou Dao Lu ◽  
Jiang Tao Yu ◽  
Zi Hong Cai

In order to research seismic behavior of flat columns under bilateral cyclic loading with different angles, pseudo-static tests are conducted, which includes three 1:2 scaled flat columns. The height-width ratio of the column section is 5. And the loading directions are 00, 250 and 450 respectively. By observation of the test phenomenon and analysis of the data, the seismic performance of the columns including stiffness, skeleton curves, hysteresis curves, ductility and energy dissipation are obtained. Moreover, finite element program ANSYS is employed to simulate the bearing capacity of specimens. The research shows that with the loading angles increasing from 0 to 45, the strength of the flat column decreased gradually, while the ductility and energy dissipation capacity increase, and the failure mode changed from compression-shear to compression-bending. P-Δ effect becomes evident at lager values of loading angle. The compression-shearing curve of flat column complies with a heart-shape curve.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yaw ChiaHwan ◽  
Han JianBo

When a structure is hit by earthquake, tremendous amount of seismic energy is released and structure is subjected to reverse loads. The mechanical properties of FRP reinforced PP ECC beams and coupon RC beam under reverse cyclic load controlled by displacement are investigated. Curing ages, reinforcement ratio, and volume fraction of PP fiber are parameters under survey. It is shown that multiple saturated cracking occurred in PP ECC beam and no crushing appeared. The PP ECC can enhance strength and energy dissipation capacity which are important to evaluate the performance of structures subjected to reverse cyclic loading.


2012 ◽  
Vol 626 ◽  
pp. 85-89 ◽  
Author(s):  
Kay Dora Abdul Ghani ◽  
Nor Hayati Hamid

The experimental work on two full-scale precast concrete beam-column corner joints with corbels was carried out and their seismic performance was examined. The first specimen was constructed without steel fiber, while second specimen was constructed by mixed up steel fiber with concrete and placed it at the corbels area. The specimen were tested under reversible lateral cyclic loading up to ±1.5% drift. The experimental results showed that for the first specimen, the cracks start to occur at +0.5% drifts with spalling of concrete and major cracks were observed at corbel while for the second specimen, the initial cracks were observed at +0.75% with no damage at corbel. In this study, it can be concluded that precast beam-column joint without steel fiber has better ductility and stiffness than precast beam-column joint with steel fiber. However, precast beam-column joint with steel fiber has better energy dissipation and fewer cracks at corbel as compared to precast beam-column joint without steel fiber.


2018 ◽  
Vol 22 (6) ◽  
pp. 1312-1328 ◽  
Author(s):  
Jianyang Xue ◽  
Rui Guo ◽  
Liangjie Qi ◽  
Dan Xu

The majority of existing ancient timber structures have different degrees of damage. The looseness of mortise-tenon joints is a kind of typical damage type. In order to study the influence of looseness on the seismic performance of mortise-tenon joints, six through-tenon joints and six dovetail-tenon joints with scale 1:3.2 were fabricated according to the requirements of the engineering fabrication method of Chinese Qing Dynasty. Each type of joints consisted of one intact joint and five artificial loose joints, and the artificial defect was made to simulate looseness by cutting the tenon sectional dimension. Based on experiments of two types of joints under low-cyclic reversed loading, the seismic behaviors of joints such as failure modes, hysteretic loops and skeleton curves, strength and stiffness degradation, and energy dissipation capacity were studied. Moreover, the comparative analyses of seismic performance between two types of joints were carried out. The variation tendency of seismic behaviors of two types of joints has similarities, and there are some differences due to their different structural styles. The results indicate that squeeze deformation between tenon and mortise of two types of joints occurred. The shape of hysteretic loops of two types of joints is reverse-Z-shape, and the pinching effect of hysteretic loops becomes more obvious with the increase in looseness, among which of through-tenon joints is more obvious than that of dovetail-tenon joints. The carrying capacity, stiffness, and energy dissipation capacity of loose joints are significantly lower than that of the intact one, and the energy dissipation capacity of dovetail-tenon joints is better than that of through-tenon joints. The rotation angles of two types of joints can reach 0.12 rad, and the loose joints still have great deformation capacity.


2020 ◽  
Vol 23 (13) ◽  
pp. 2822-2834
Author(s):  
Xian Rong ◽  
Hongwei Yang ◽  
Jianxin Zhang

This article investigated the seismic performance of a new type of precast concrete beam-to-column joint with a steel connector for easy construction. Five interior beam-to-column joints, four precast concrete specimens, and one monolithic joint were tested under reversed cyclic loading. The main variables were the embedded H-beam length, web plate or stiffening rib usage, and concrete usage in the connection part. The load–displacement hysteresis curves were recorded during the test, and the behavior was investigated based on displacement ductility, deformability, skeleton curves, stiffness degradation, and energy dissipation capacity. The results showed that the proposed beam-to-column joint with the web plate in the steel connector exhibited satisfactory behavior in terms of ductility, load capacity, and energy dissipation capacity under reversed cyclic loading, and the performance was ductile because of the yielding of the web plate. Therefore, the proposed joint with the web plate could be used in high seismic regions. The proposed joint without the web plate exhibited similar behavior to the monolithic specimen, indicating that this joint could be used in low or moderate seismic zones. Furthermore, the utilization of the web plate was vital to the performance of this system.


Sign in / Sign up

Export Citation Format

Share Document