scholarly journals FULL SCALE TESTS OF THE BASE-ISOLATION SYSTEM FOR AN EMERGENCY HOSPITAL

Author(s):  
M.F. Ferrotto ◽  
Liborio Cavaleri ◽  
Fabio Di Trapani ◽  
Paolo Castaldo
2008 ◽  
Vol 14 (27) ◽  
pp. 49-54 ◽  
Author(s):  
Ken'ichi KAWAGUCHI ◽  
Keiichi ABE ◽  
Jun'ichiro ABE ◽  
Tomoyasu TAGUCHI ◽  
Ryota TAKAHAMA

Author(s):  
S. Kitamura ◽  
M. Morishita ◽  
S. Moro

A structural concept of a vertical component isolation system for fast reactors, assuming a building adopting a horizontal base isolation system, has been studied. In this concept, a reactor vessel and major primary components are suspended from a large common deck supported by isolation devices consisting of large coned disk springs. The outline of the vertical component seismic isolation system and a series of model tests with full scale coned disk spring and damper are shown in this paper.


2020 ◽  
Vol 11 (1) ◽  
pp. 82
Author(s):  
Fabio Mazza ◽  
Mirko Mazza

Elastomeric bearings are commonly used in base-isolation systems to protect the structures from earthquake damages. Their design is usually developed by using nonlinear models where only the effects of shear and compressive loads are considered, but uncertainties still remain about consequences of the tensile loads produced by severe earthquakes like the near-fault ones. The present work aims to highlight the relapses of tension on the response of bearings and superstructure. To this end, three-, seven- and ten-storey r.c. framed buildings are designed in line with the current Italian seismic code, with a base-isolation system constituted of High-Damping-Rubber Bearings (HDRBs) designed for three values of the ratio between the vertical and horizontal stiffnesses. Experimental and analytical results available in literature are used to propose a unified nonlinear model of the HDRBs, including cavitation and post-cavitation of the elastomer. Nonlinear incremental dynamic analyses of the test structures are carried out using a homemade computer code, where other models of HDRBs considering only some nonlinear phenomena are implemented. Near-fault earthquakes with comparable horizontal and vertical components, prevailing horizontal component and prevailing vertical component are considered as seismic input. Numerical results highlight that a precautionary estimation of response parameters of the HDRBs is attained referring to the proposed model, while its effects on the nonlinear response of the superstructure are less conservative.


2021 ◽  
Vol 879 ◽  
pp. 189-201
Author(s):  
M.A. Amir ◽  
N.H. Hamid

Recently, there are a lot of technological developments in the earthquake engineering field to reduce structural damage and one of them is a base isolation system. The base isolation system is one of the best technologies for the safety of human beings and properties under earthquake excitations. The aim of this paper is to review previous research works on simulation of base isolation systems for RC buildings and their efficiency in the safety of these buildings. Base isolation decouples superstructure from substructure to avoid transmission of seismic energy to the superstructure of RC buildings. The most effective way to assess the base isolation system for RC building under different earthquake excitations is by conducting experiment work that consumes more time and money. Many researchers had studied the behavior of base isolation system for structure through modeling the behavior of the base isolation in which base isolator is modeled through numerical models and validated through experimental works. Previous researches on the modeling of base isolation systems of structures had shown similar outcomes as the experimental work. These studies indicate that base isolation is an effective technology in immunization of structures against earthquakes.


2012 ◽  
Vol 234 ◽  
pp. 96-101 ◽  
Author(s):  
Donato Cancellara ◽  
Fabio de Angelis

In the present work we have analyzed a particular base isolation system for the seismic protection of a multi-storey reinforced concrete (RC) building. The viscous dampers and friction sliders are the devices adopted in parallel for realizing the base isolation system. The base isolation structure has been designed and verified according to European seismic code EC8 and by considering for the friction sliders the influence of the sliding velocity on the value of the friction coefficient. A dynamic nonlinear analysis for a three-dimensional base isolated structure has been performed. Recorded accelerograms for bi-directional ground motions have been used which comply with the requirements imposed by EC8 for the representation of a seismic action in a time history analysis. In this paper a comparative analysis is presented between the base isolated structure with the described hybrid base isolation system and the traditional fixed base structure.


Author(s):  
Kengo Goda ◽  
Osamu Furuya ◽  
Kohei Imamura ◽  
Kenta Ishihana

At the present, base isolation system has been recognized by general earthquake resistant technique since the Great Hanshin Earthquake 1995. The seismic isolation will be aggressively applied to not only architectural and civil structures but also various structures, because the effectiveness on seismic safety had been demonstrated again in the Great East Japan Earthquake. In generally, although the base isolation system is divided into laminated rubber bearing type and friction sliding bearing type. In the case of former type, shape factor, maximum or minimum outer shapes and so on are restricted by the material characteristics in visco-elastic material. In general, the isolation structure is used in high damping rubber. However, we pay attention to base isolation using urethane elastomer. Urethane elastomer has excellent elasticity, mechanical strength, abrasion resistance, weather resistance, oil resistance, impact resistance the absorbent, anti-vibration and excellent low-temperature properties. Furthermore, it is possible to impart various characteristics by a combination of isocyanate and polyol and chain extender, requires no large-scale apparatus, it has the advantage molecular design is easy. In previous study, the research and development of laminated type base isolation device using urethane elastomer was carried out to upgrade a seismic safety for various structures. The fundamental characteristics was investigated from several loading test by using various experimental devices, and the design formula for the stiffness and equivalent damping coefficient is formulated as an approximate expression of mechanical characteristics until now. It was confirmed that urethane elastomer is not hardening up to 500% shear strain. Moreover, the experimental examination for aged deterioration in the urethane material has been continuously carried out. As the results, it was confirmed that the laminated type seismic isolation device using urethane elastomer is possible to develop as a practicable device from the stable mechanical properties as considering in design step. In this study, the small-scale laminated type base isolation device using urethane elastomer is advanced to the direction of further technical upgrading and of scale down for light-weight structure as a sever rack. The first stage, basic properties of the urethane elastomer has been investigated by loading test. Furthermore, the design equation is created by loading test using urethane elastomer. The validity of the design equation has been confirmed. The second stage, the compression creep test with laminated type base isolation device has been investigated to confirm an effect on light-weight mechanical devices.


Sign in / Sign up

Export Citation Format

Share Document