scholarly journals CSRR-DGS Bandpass Filter Based on Half Mode Substrate Integrated Waveguide for X-Band Applications

2021 ◽  
Vol 10 (3) ◽  
pp. 39-42
Author(s):  
B. Fellah ◽  
N. Cherif ◽  
M. Abri ◽  
H. Badaoui

In this paper, a half mode substrate integrated waveguide (HMSIW) bandpass filter using defected ground structure cells (DGS) is proposed. By using the periodic square CSRR resonant properties of DGS according to design requirement, an X-band band-pass filter is designed and analyzed to meet compact size, low insertion loss, and high rejection. The simulation results obtained by CST in X-band show that the proposed filter is characterized by a large transmitted bandwidth of about 1.38 GHz from 13.03 to 14.41 GHz. The higher simulated insertion loss is about −2.6 dB and the lower return loss is about −34 dB. The proposed filter size is 9.50 × 38.00 mm2 which make it a compact component. The structure is optimized using CST simulator. For the proposal validation, the simulation results is compared by HFSS. The simulation results are in good agreement for the   two simulator.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yong Mao Huang ◽  
Zhenhai Shao ◽  
Zhaosheng He ◽  
Chang Jiang You ◽  
Di Jiang

A half mode substrate integrated waveguide-to-defected ground structure (HMSIW-DGS) cell and its embedded form are proposed to miniaturize a bandpass filter. Both cells can purchase wideband frequency response and low insertion loss, as well as simple and easy fabrication. By cascading two of them according to design requirement, an X-band bandpass filter is designed and measured to meet compact size, low insertion loss, good return loss, second harmonic suppression, and linear phase.


2013 ◽  
Vol 273 ◽  
pp. 371-374
Author(s):  
Bao Ping Li ◽  
Yan Liang Zhang

Due to the frequency response periodicity of distributed transmission line, microstrip band-pass filter usually produces parasitic pass-band and outputs harmonics away from the center frequency of main pass-band. Based on the study of rectangular ring defected ground structure, a 5-order microstrip LPF(low-pass filter) was designed using the single-pole band-stop and slow-wave characteristics of the rectangular ring DGS(Defected Ground Structure) and SISS(Step-Impedance Shunt Stub) structure. Compared with traditional LPF, this LPF presents the advantages of compact size, low insertion loss, broad stop-band and high steep. It also validates the requirements of miniaturization and high performance for filters.


2019 ◽  
Vol 4 (7) ◽  
pp. 28-30
Author(s):  
William Johnson ◽  
Cavin Roger Nunes ◽  
Savio Sebastian Dias ◽  
Siddhi Suresh Parab ◽  
Varsha Shantaram Hatkar

In this paper, a dual band microstrip bandpass filter has been proposed utilizing three edge coupled resonators, interdigital stubs and DGS technique. To enhance the coupling degree, two interdigital coupled feed lines are employed in this filter. The suppressing cell consists of stepped impedance ladder type resonators, which provides a wide stopband. The proposed suppressing cell has clear advantages like low insertion loss in the passband and suitable roll off. The frequency response of the filter looks like a standard dual band band-pass filter. The filter exhibits a dual passband with resonant frequencies at 2.2GHz and 3.45GHz covers LTE1 and LTE22 bands.


Frequenz ◽  
2018 ◽  
Vol 72 (9-10) ◽  
pp. 455-458 ◽  
Author(s):  
Vivek Singh ◽  
Vinay Kumar Killamsetty ◽  
Biswajeet Mukherjee

Abstract In this letter, a miniaturized Band Pass Filter (BPF) with wide stopband centered at 0.350 GHz for TETRA band applications is proposed using a Spiral Short Circuit quarter wavelength Stepped Impedance Resonator (SSC-SIR) and a stub loaded on feed line for enhancement of rejection level in the stopband. Spiral configuration of the resonator is used for the miniaturization of BPF. The proposed BPF provides a 3dB fractional bandwidth of 13.7 % with two transmission zeros in the lower and upper stopband to provide good selectivity and four transmission zeros which provide wide stopband upto 6.86f0. Proposed BPF has a very compact size of 0.064λg×0.062λg.


Author(s):  
M. Reza Hidayat ◽  
Difa Dwi Juliantara Sukmawan

The use of bandpass filters is commonly used but the use of specifications varies depending on needs, in this case the microstrip bandpass filter is expected to observe the multiarms characteristics of the open loop resonator on the performance of the bandpass filter for EHF frequencies. The design of this microstrip bandpass filter uses a multiarms open loop resonator design where at the beginning of the simulation stage uses only 1 arm with patch width, arm spacing, feeder line width and patch length based on trial and error. The final simulation results are obtained with a connector distance of 2 mm and a distance of 1 mm between arms with a value of S11 = -13.8 dB and S21 = -2.8 dB at a frequency of 30.8 GHz based on the simulation results. The filter has been successfully fabricated but cannot be measured because the frequency is too high and the measuring instrument cannot measure the frequency


Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 195 ◽  
Author(s):  
Ki-Hun Lee ◽  
Eun-Seong Kim ◽  
Jun-Ge Liang ◽  
Nam-Young Kim

In this study, the proposed bandpass filter (BPF) connects an interdigital and a spiral capacitor in series between the two symmetrical halves of a circular intertwined spiral inductor. For the mass production of devices and to achieve a higher accuracy and a better performance compared with other passive technologies, we used integrated passive device (IPD) technology. IPD has been widely used to realize compact BPFs and achieve the abovementioned. The center frequency of the proposed BPF is 1.96 GHz, and the return loss, insertion loss and transmission zero are 26.77 dB, 0.27 dB and 38.12 dB, respectively. The overall dimensions of BPFs manufactured using IPD technology are 984 × 800 μ m 2 , which is advantageous for miniaturization and integration.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 421
Author(s):  
Mrs. S. Jalaja ◽  
Dr V. Prithivirajan ◽  
K Gajalakshimi ◽  
S Chitra ◽  
R Nithya

The design and simulation of coplanar waveguide (CPW) bandpass filter (BPF) has been described in this paper. It mainly focuses on Defected Ground Structure (DGS), where U-shaped DGS with open stub in transmission line has been introduced. By etching the DGS pattern in ground and transmission will change the distribution of inductance and capacitance to produce filtering effect. This paper also discusses about the influence of geometrical parameter l for the improvement in the frequency response of bandpass filter. As increasing the dimension of the geometric parameter l shift the center frequency to the higher frequencies. This filter offers a bandwidth of 1.65 GHz with passband ranging from 2.1 GHz to 3.75 GHz with a stopband rejection is about -28 dB.  


Sign in / Sign up

Export Citation Format

Share Document