scholarly journals Roughness effect on the efficiency of dimer antenna based biosensor

2012 ◽  
Vol 1 (2) ◽  
pp. 41 ◽  
Author(s):  
D. Barchiesi ◽  
S. Kessentini

The fabrication process of nanodevices is continually improved. However, most of the nanodevices, such as biosensors present rough surfaces with mean roughness of some nanometers even if the deposition rate of material is more controlled. The effect of roughness on performance of biosensors was fully addressed for plane biosensors and gratings, but rarely addressed for biosensors based on Local Plasmon Resonance. The purpose of this paper is to evaluate numerically the influence of nanometric roughness on the efficiency of a dimer nano-biosensor (two levels of roughness are considered). Therefore, we propose a general numerical method, that can be applied to any other nanometric shape, to take into account the roughness in a three dimensional model. The study focuses on both the far-field, which corresponds to the experimental detected data, and the near-field, responsible for exciting and then detecting biological molecules. The results suggest that the biosensor efficiency is highly sensitive to the surface roughness. The roughness can produce important shifts of the extinction efficiency peak and a decrease of its amplitude resulting from changes in the distribution of near-field and absorbed electric field intensities.

Author(s):  
G. Parent ◽  
S. Fumeron ◽  
D. Lacroix

Recent studies have shown the importance of surface waves in heat transfer near interfaces. The scanning near field optical microscopy (SNOM) provides an experimental tool to investigate the thermal electromagnetic field near surfaces. In this work, we present a three dimensional model of SNOM devices. This model is based on the finite-difference-time domain (FDTD) method associated to a near to far field transformation. Near field and far field scattered by a silicon tetrahedral tip and by a pecfectly conducting one are presented and discussed.


2012 ◽  
Vol 184-185 ◽  
pp. 180-183 ◽  
Author(s):  
Gang Ma ◽  
Wei Zhao ◽  
Xin Min Shen

The three dimensional model was established for studying performance of spiral groove gas face seal. According to machining features of different surface area, the seal face can be divided into three parts, rotor ring grooved area, rotor ring non-grooved area and static ring area. The effect of roughness on seal performance was analyzed based on calculation of three dimensional flow field. The analysis results show that the surface roughness of rotor ring grooved area has great influence on the seal performance, but the influence is little when roughness on non-grooved rotor ring surface and static ring surface. The influence must be considered when surface roughness of rotor ring grooved area bigger than 0.2μm. Roughness of rotor ring surface can increase the loading force while it also can cause the increase of leakage. It is important to select rational roughness when designing gas face seal.


2003 ◽  
Vol 125 (3) ◽  
pp. 533-542 ◽  
Author(s):  
Jian W. Choo ◽  
Romeo P. Glovnea ◽  
Andrew V. Olver ◽  
Hugh A. Spikes

The Spacer Layer Imaging method has been used to investigate the influence of three-dimensional roughness features on the thickness and shape of elastohydrodynamic (EHL) films. An array of near-hemispherical bumps was employed to represent asperities. A micro-EHL film developed at the bumps whose orientation depended on that of the inlet boundary at the location at which the bump had entered the contact. Rolling-sliding conditions induced a micro-EHL film with a classical horseshoe shape at the bumps. The flow of lubricant around the bumps appeared to differ between thin and thick films.


Author(s):  
Liying Guo ◽  
Xinwei Wang

This paper presents the results from molecular dynamics simulations that are performed to explore the properties of the shock wave during laser-assisted near field surface nanostructuring. A quasi-three dimensional model is constructed to study systems consisting of over 2 million atoms. This work includes studies on the velocity as well as pressure evolution of shock wave front with respect to different solid/gas molecular mass ratios and different ambient gas densities. The limitation on shock wave formation under the same laser fluence is also investigated. The results show that lower ratio of the solid/gas molecular weight weakens the strength of the shock wave during the nanostructuring process. Additionally, the formation and attenuation of the shock wave under different ambient gas conditions is studied in substantial detail.


Skull Base ◽  
2008 ◽  
Vol 18 (S 01) ◽  
Author(s):  
Akio Morita ◽  
Toshikazu Kimura ◽  
Shigeo Sora ◽  
Kengo Nishimura ◽  
Hisayuki Sugiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document