scholarly journals A Compact Broad-band UHF RFID Tag Loaded with Triangular SRR Arrays

2018 ◽  
Vol 7 (2) ◽  
pp. 48-52 ◽  
Author(s):  
A. K. K. John ◽  
T. Mathew

A novel compact planar UHF RFID tag with broadband operation and enhanced read range characteristics are presented. The structure of the tag consists of a T- matched dipole antenna whose arms are orthogonally loaded with Triangular SRR arrays. Triangular SRR arms loaded in the structure produce compactness and good impedance matching which is needed for maximizing the read range. The measured results shows that the projected tag shows a highest read range of 9.6 meter in the European UHF RFID band of 866 MHz and significantly better read range in the other UHF RFID bands in the 860-930 MHz range . Measured read range differences over the azimuth and elevation angular ranges are also suggested.

2014 ◽  
Vol 541-542 ◽  
pp. 458-461
Author(s):  
Pu Yu Duan ◽  
Dong Wang

Cylinder is a common object and used in logistics industry, such as liquid container like wine. The performance of tags that are used on these objects declines, especially the read range and the radiation pattern of the tag. In this paper, a type of UHF tag antenna directly mountable on the cylinder surface. In order to reduce the impact of the deformation, the tag is designed with meander-line but not symmetrical. Antenna is combined with T-matching network to ensure good impedance matching. Compared with the basic dipole antenna tag both cylinder and plane surface, we can get the prominent feature of the tag proposed in this paper.


The Radio Frequency Identification (RFID) technology has been increasingly used for various application such as tracking of products, smart cards, identification, item management, security etc. In this paper, the performance parameter of the passive UHF RFID tag antenna has been studied for four different substrate materials viz., FR4 epoxy, PET, Rogers 4350, Taconic TLY materials. A simple meandered dipole antenna has been designed using a T-match stub for impedance matching of the tag antenna with the attached RFID chip. These different substrates are then designed separately, for the same antenna geometry. The effect of using these substrates on RFID tag antenna parameters such as reflection coefficient, antenna gain, VWSR, radiation pattern, impedance, ease of optimization level, read range, and radiation efficiency are then observed.


2021 ◽  
Author(s):  
Mahmoud Wagih ◽  
Junjie Shi

Owing to its low relative permittivity, very few microwave sensors have been developed for monitoring ice deposition. This paper presents the first use of UHF RFID tags for wireless RF ice sensing applications. Despite its low permittivity, the existence of ice as a superstrate on a planar ultra-thin dipole antenna can lower the resonance frequency of the antenna significantly. The RFID tags, having a measured unloaded range of 9.4 m, were evaluated for remotely detecting the formation of ice in various scenarios and up to 10~m from the reader, as well as monitoring the ice thawing, based on the Relative Signal Strength (RSS) in a phase-free approach. Unlike conventional RSS-based sensing approaches where the tag's read-range is reduced as the RSS decreases in response to the stimulant, the ice superstrate improves the impedance matching of the tags, maintaining a 10 m loaded read-range with over 12 dB ice-sensitivity, in an echoic multi-path environment. The long range and high sensitivity show that UHF RFID is a promising method of detecting and monitoring ice formation and thawing in future smart cities.


2021 ◽  
Author(s):  
Mahmoud Wagih ◽  
Junjie Shi

Owing to its low relative permittivity, very few microwave sensors have been developed for monitoring ice deposition. This paper presents the first use of UHF RFID tags for wireless RF ice sensing applications. Despite its low permittivity, the existence of ice as a superstrate on a planar ultra-thin dipole antenna can lower the resonance frequency of the antenna significantly. The RFID tags, having a measured unloaded range of 9.4 m, were evaluated for remotely detecting the formation of ice in various scenarios and up to 10~m from the reader, as well as monitoring the ice thawing, based on the Relative Signal Strength (RSS) in a phase-free approach. Unlike conventional RSS-based sensing approaches where the tag's read-range is reduced as the RSS decreases in response to the stimulant, the ice superstrate improves the impedance matching of the tags, maintaining a 10 m loaded read-range with over 12 dB ice-sensitivity, in an echoic multi-path environment. The long range and high sensitivity show that UHF RFID is a promising method of detecting and monitoring ice formation and thawing in future smart cities.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zahangir Khan ◽  
Xiaochen Chen ◽  
Han He ◽  
Adnan Mehmood ◽  
Johanna Virkki

This paper introduces a prototype of a low-energy high-temperature exposure sensor, which is a temperature-sensitive passive UHF RFID tag that bends forward when exposed to warm air. This “Bending Tag” design is based on a simple dipole antenna fabricated from an electro-textile material. The antenna has a 3D-printed substrate, which is constructed from a commercial Thermo Reactive Filament that gets soft when exposed to 50°C for 30 seconds, causing the tag to bend forward and curve. The sensor tag initially has a read range of more than 6 meters throughout the global UHF RFID frequency band. After bending, there is a significant decrease in the read range (to around 2–3 meters), which is caused by the changed backscattered power of the sensor tag. In an office environment, the backscattered power changes from −36 dBm to −43 dBm. The change in a sensor tag-reference tag system as dP% is approximately 70%. Based on these initial results, our bending tag can be further developed to work as a cost-effective low-energy sensor for monitoring high-temperature exposure.


2021 ◽  
Author(s):  
Mahmoud Wagih ◽  
Junjie Shi

Owing to its low relative permittivity, very few microwave sensors have been developed for monitoring ice deposition. This paper presents the first use of UHF RFID tags for wireless RF ice sensing applications. Despite its low permittivity, the existence of ice as a superstrate on a planar ultra-thin dipole antenna can lower the resonance frequency of the antenna significantly. The RFID tags, having a measured unloaded range of 9.4 m, were evaluated for remotely detecting the formation of ice in various scenarios and up to 10~m from the reader, as well as monitoring the ice thawing, based on the Relative Signal Strength (RSS) in a phase-free approach. Unlike conventional RSS-based sensing approaches where the tag's read-range is reduced as the RSS decreases in response to the stimulant, the ice superstrate improves the impedance matching of the tags, maintaining a 10 m loaded read-range with over 12 dB ice-sensitivity, in an echoic multi-path environment. The long range and high sensitivity show that UHF RFID is a promising method of detecting and monitoring ice formation and thawing in future smart cities.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5460 ◽  
Author(s):  
Franck Kimetya Byondi ◽  
Youchung Chung

This paper presents a passive cavity type Ultra High Frequency (UHF) Radio Frequency Identification (RFID) tag antenna having the longest read-range, and compares it with existing long-range UHF RFID tag antenna. The study also demonstrates mathematically and experimentally that our proposed longest-range UHF RFID cavity type tag antenna has a longer read-range than existing passive tag antennas. Our tag antenna was designed with 140 × 60 × 10 mm3 size, and reached 26 m measured read-range and 36.3 m mathematically calculated read-range. This UHF tag antenna can be applied to metal and non-metal objects. By adding a further sensing capability, it can have a great benefit for the Internet of Things (IoT) and wireless sensor networks (WSN).


2020 ◽  
pp. 004051752094890
Author(s):  
Yong Zhang ◽  
Jiyong Hu ◽  
Xiong Yan ◽  
Xudong Yang

This paper describes the design of a novel ultrahigh frequency radio frequency identification (UHF RFID) tag thread that mainly consisted of the common yarn and the normal mode helix dipole antenna. The linear dipole antenna for the UHF RFID tag thread was too long to miniaturize the tag. In order to maximize the read performance and miniaturize the size of the tag, the basic antenna structure parameters, such as the helical pitch and single arm length, were optimized by analyzing the radiation parameter S11 of the normal mode helix dipole antenna based on simulation experiments. The simulation experiments started with optimizing the single arm length to obtain the minimum of the S11 parameter at resonant frequency, then the helical pitch was further optimized to limit the resonant frequency to the UHF range. The simulation results showed the resonant frequency rises with an increase of helical pitch and declines with an increase of single arm length. Furthermore, a series of UHF RFID tag threads with good performance from the simulation cases were prepared, and the performance of the optimized tag was validated. Generally, the UHF RFID tag thread with optimized helix dipole antenna could reduce the axial length of the tag by 57% and improve the reading range by 500%, and its performance was greatly superior to that of the UHF RFID tag thread with the classical linear dipole antenna.


Author(s):  
Wei-Chih Chen ◽  
Hua-Ming Chen ◽  
Yi-Fang Lin ◽  
Jyun-Wei Jhuang ◽  
Sue-Wei Chang ◽  
...  
Keyword(s):  
Uhf Rfid ◽  

Sign in / Sign up

Export Citation Format

Share Document