scholarly journals A Baybayin word recognition system

2021 ◽  
Vol 7 ◽  
pp. e596
Author(s):  
Rodney Pino ◽  
Renier Mendoza ◽  
Rachelle Sambayan

Baybayin is a pre-Hispanic Philippine writing system used in Luzon island. With the effort in reintroducing the script, in 2018, the Committee on Basic Education and Culture of the Philippine Congress approved House Bill 1022 or the ”National Writing System Act,” which declares the Baybayin script as the Philippines’ national writing system. Since then, Baybayin OCR has become a field of research interest. Numerous works have proposed different techniques in recognizing Baybayin scripts. However, all those studies anchored on the classification and recognition at the character level. In this work, we propose an algorithm that provides the Latin transliteration of a Baybayin word in an image. The proposed system relies on a Baybayin character classifier generated using the Support Vector Machine (SVM). The method involves isolation of each Baybayin character, then classifying each character according to its equivalent syllable in Latin script, and finally concatenate each result to form the transliterated word. The system was tested using a novel dataset of Baybayin word images and achieved a competitive 97.9% recognition accuracy. Based on our review of the literature, this is the first work that recognizes Baybayin scripts at the word level. The proposed system can be used in automated transliterations of Baybayin texts transcribed in old books, tattoos, signage, graphic designs, and documents, among others.

2020 ◽  
Vol 5 (2) ◽  
pp. 504
Author(s):  
Matthias Omotayo Oladele ◽  
Temilola Morufat Adepoju ◽  
Olaide ` Abiodun Olatoke ◽  
Oluwaseun Adewale Ojo

Yorùbá language is one of the three main languages that is been spoken in Nigeria. It is a tonal language that carries an accent on the vowel alphabets. There are twenty-five (25) alphabets in Yorùbá language with one of the alphabets a digraph (GB). Due to the difficulty in typing handwritten Yorùbá documents, there is a need to develop a handwritten recognition system that can convert the handwritten texts to digital format. This study discusses the offline Yorùbá handwritten word recognition system (OYHWR) that recognizes Yorùbá uppercase alphabets. Handwritten characters and words were obtained from different writers using the paint application and M708 graphics tablets. The characters were used for training and the words were used for testing. Pre-processing was done on the images and the geometric features of the images were extracted using zoning and gradient-based feature extraction. Geometric features are the different line types that form a particular character such as the vertical, horizontal, and diagonal lines. The geometric features used are the number of horizontal lines, number of vertical lines, number of right diagonal lines, number of left diagonal lines, total length of all horizontal lines, total length of all vertical lines, total length of all right slanting lines, total length of all left-slanting lines and the area of the skeleton. The characters are divided into 9 zones and gradient feature extraction was used to extract the horizontal and vertical components and geometric features in each zone. The words were fed into the support vector machine classifier and the performance was evaluated based on recognition accuracy. Support vector machine is a two-class classifier, hence a multiclass SVM classifier least square support vector machine (LSSVM) was used for word recognition. The one vs one strategy and RBF kernel were used and the recognition accuracy obtained from the tested words ranges between 66.7%, 83.3%, 85.7%, 87.5%, and 100%. The low recognition rate for some of the words could be as a result of the similarity in the extracted features.


2020 ◽  
Author(s):  
Nishatul Majid

This dissertation presents a flexible and robust offline handwriting recognition system which is tested on the Bangla and Korean scripts. Offline handwriting recognition is one of the most challenging and yet to be solved problems in machine learning. While a few popular scripts (like Latin) have received a lot of attention, many other widely used scripts (like Bangla) have seen very little progress. Features such as connectedness and vowels structured as diacritics make it a challenging script to recognize. A simple and robust design for offline recognition is presented which not only works reliably, but also can be used for almost any alphabetic writing system. The framework has been rigorously tested for Bangla and demonstrated how it can be transformed to apply to other scripts through experiments on the Korean script whose two-dimensional arrangement of characters makes it a challenge to recognize. The base of this design is a character spotting network which detects the location of different script elements (such as characters, diacritics) from an unsegmented word image. A transcript is formed from the detected classes based on their corresponding location information. This is the first reported lexicon-free offline recognition system for Bangla and achieves a Character Recognition Accuracy (CRA) of 94.8%. This is also one of the most flexible architectures ever presented. Recognition of Korean was achieved with a 91.2% CRA. Also, a powerful technique of autonomous tagging was developed which can drastically reduce the effort of preparing a dataset for any script. The combination of the character spotting method and the autonomous tagging brings the entire offline recognition problem very close to a singular solution. Additionally, a database named the Boise State Bangla Handwriting Dataset was developed. This is one of the richest offline datasets currently available for Bangla and this has been made publicly accessible to accelerate the research progress. Many other tools were developed and experiments were conducted to more rigorously validate this framework by evaluating the method against external datasets (CMATERdb 1.1.1, Indic Word Dataset and REID2019: Early Indian Printed Documents). Offline handwriting recognition is an extremely promising technology and the outcome of this research moves the field significantly ahead.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xiaochao Dang ◽  
Yang Liu ◽  
Zhanjun Hao ◽  
Xuhao Tang ◽  
Chenguang Shao

In recent years, the researchers have witnessed the important role of air gesture recognition in human-computer interactive (HCI), smart home, and virtual reality (VR). The traditional air gesture recognition method mainly depends on external equipment (such as special sensors and cameras) whose costs are high and also with a limited application scene. In this paper, we attempt to utilize channel state information (CSI) derived from a WLAN physical layer, a Wi-Fibased air gesture recognition system, namely, WiNum, which solves the problems of users’ privacy and energy consumption compared with the approaches using wearable sensors and depth cameras. In the process of recognizing the WiNum method, the collected raw data of CSI should be screened, among which can reflect the gesture motion. Meanwhile, the screened data should be preprocessed by noise reduction and linear transformation. After preprocessing, the joint of amplitude information and phase information is extracted, to match and recognize different air gestures by using the S-DTW algorithm which combines dynamic time warping algorithm (DTW) and support vector machine (SVM) properties. Comprehensive experiments demonstrate that under two different indoor scenes, WiNum can achieve higher recognition accuracy for air number gestures; the average recognition accuracy of each motion reached more than 93%, in order to achieve effective recognition of air gestures.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Raghad Tariq Al-Hassani ◽  
Dogu Cagdas Atilla ◽  
Çağatay Aydin

Speech signal is enriched with plenty of features used for biometrical recognition and other applications like gender and emotional recognition. Channel conditions manifested by background noise and reverberation are the main challenges causing feature shifts in the test and training data. In this paper, a hybrid speaker identification model for consistent speech features and high recognition accuracy is made. Features using Mel frequency spectrum coefficients (MFCC) have been improved by incorporating a pitch frequency coefficient from speech time domain analysis. In order to enhance noise immunity, we proposed a single hidden layer feed-forward neural network (FFNN) tuned by an optimized particle swarm optimization (OPSO) algorithm. The proposed model is tested using 10-fold cross-validation over different levels of Adaptive White Gaussian Noise (AWGN) (0-50 dB). A recognition accuracy of 97.83% was obtained from the proposed model in clean voice environments. However, a noisy channel is realized with lesser impact on the proposed model as compared with other baseline classifiers such as plain-FFNN, random forest (RF), K -nearest neighbour (KNN), and support vector machine (SVM).


2020 ◽  
Vol 37 (4) ◽  
pp. 661-669
Author(s):  
Gurpartap Singh ◽  
Sunil Agrawal ◽  
Balwinder Singh Sohi

In the present study, a method to increase the recognition accuracy of Gurmukhi (Indian Regional Script) Handwritten Digits has been proposed. The proposed methodology uses a DCNN (Deep Convolutional Neural Network) with a cascaded XGBoost (Extreme Gradient Boosting) algorithm. Also, a comprehensive analysis has been done to apprehend the impact of kernel size of DCNN on recognition accuracy. The reason for using DCNN is its impressive performance in terms of recognition accuracy of handwritten digits, but in order to achieve good recognition accuracy, DCNN requires a huge amount of data and also significant training/testing time. In order to increase the accuracy of DCNN for a small dataset more images have been generated by applying a shear transformation (A transformation that preserves parallelism but not length and angles) to the original images. To address the issue of large training time only two hidden layers along with selective cascading XGBoost among the misclassified digits have been used. Also, the issue of overfitting is discussed in detail and has been reduced to a great extent. Finally, the results are compared with performance of some recent techniques like SVM (Support Vector Machine) Random Forest, and XGBoost classifiers on DCT (Discrete Cosine Transform) and DWT (Discrete Wavelet Transform) features obtained on the same dataset. It is found that proposed methodology can outperform other techniques in terms of overall rate of recognition.


2019 ◽  
Vol 9 (4) ◽  
pp. 119 ◽  
Author(s):  
Hisham S. Alkadi

The past few decades have witnessed an aesthetic trend in the Arabic Writing System and its well-known calligraphic arts, which have exploited features of other writing systems, including Latin and Chinese scripts. Although there are great differences between almost every aspect of the Arabic and Latin scripts, this trend has blended certain characteristics of Arabic script with some features of Latin script. This study examines this trend and its experiments and transitions, from the moment it first emerged until the present day. It investigates the motivations underpinning the trend and analyzes its artistic and linguistic characteristics, in which the researcher visually analyzes all possible details and disassembles both orthographic items and calligraphic features into their basic essential scripts. The findings reveal an aesthetic and linguistic trend that is substantial and significant, based on linguistic, cultural, and sociocultural factors, including increased levels of communication, culturalism, advances in technology, transportation, migration, and globalization. Script tools and features are used to divide the main trend into three sub-trends: 1) Script switching, where scripts are interchanged at word-level; 2) Script fusion, where scripts are altered at letter-level; and 3) Faux fonts, which dissolve certain features of Arabic script to mirror Latin script. All of the techniques used to make Arabic script match Latin script have been shown to be culturally-induced and linguistically informative, rather than merely aesthetic. The findings of this study also indicate that this new phenomenon is likely to be in the early stages, with further developments expected to unfold in future.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4757
Author(s):  
Dehao Jiang ◽  
Mingqi Li ◽  
Chunling Xu

In recent years, a series of research experiments have been conducted on WiFi-based gesture recognition. However, current recognition systems are still facing the challenge of small samples and environmental dependence. To deal with the problem of performance degradation caused by these factors, we propose a WiFi-based gesture recognition system, WiGAN, which uses Generative Adversarial Network (GAN) to extract and generate gesture features. With GAN, WiGAN expands the data capacity to reduce time cost and increase sample diversity. The proposed system extracts and fuses multiple convolutional layer feature maps as gesture features before gesture recognition. After fusing features, Support Vector Machine (SVM) is exploited for human activity classification because of its accuracy and convenience. The key insight of WiGAN is to generate samples and merge multi-grained feature maps in our designed GAN, which not only enhances the data but also allows the neural network to select different grained features for gesture recognition. According to the result of experiments conducted on two existing datasets, the average recognition accuracy of WiGAN reaches 98% and 95.6%, respectively, outperforming the existing system. Moreover, the recognition accuracy under different experimental environments and different users shows the robustness of WiGAN.


2021 ◽  
Vol 7 ◽  
pp. e360
Author(s):  
Rodney Pino ◽  
Renier Mendoza ◽  
Rachelle Sambayan

In 2018, the Philippine Congress signed House Bill 1022 declaring the Baybayin script as the Philippines’ national writing system. In this regard, it is highly probable that the Baybayin and Latin scripts would appear in a single document. In this work, we propose a system that discriminates the characters of both scripts. The proposed system considers the normalization of an individual character to identify if it belongs to Baybayin or Latin script and further classify them as to what unit they represent. This gives us four classification problems, namely: (1) Baybayin and Latin script recognition, (2) Baybayin character classification, (3) Latin character classification, and (4) Baybayin diacritical marks classification. To the best of our knowledge, this is the first study that makes use of Support Vector Machine (SVM) for Baybayin script recognition. This work also provides a new dataset for Baybayin, its diacritics, and Latin characters. Classification problems (1) and (4) use binary SVM while (2) and (3) apply the multiclass SVM classification. On average, our numerical experiments yield satisfactory results: (1) has 98.5% accuracy, 98.5% precision, 98.49% recall, and 98.5% F1 Score; (2) has 96.51% accuracy, 95.62% precision, 95.61% recall, and 95.62% F1 Score; (3) has 95.8% accuracy, 95.85% precision, 95.8% recall, and 95.83% F1 Score; and (4) has 100% accuracy, 100% precision, 100% recall, and 100% F1 Score.


2020 ◽  
Vol 5 (2) ◽  
pp. 609
Author(s):  
Segun Aina ◽  
Kofoworola V. Sholesi ◽  
Aderonke R. Lawal ◽  
Samuel D. Okegbile ◽  
Adeniran I. Oluwaranti

This paper presents the application of Gaussian blur filters and Support Vector Machine (SVM) techniques for greeting recognition among the Yoruba tribe of Nigeria. Existing efforts have considered different recognition gestures. However, tribal greeting postures or gestures recognition for the Nigerian geographical space has not been studied before. Some cultural gestures are not correctly identified by people of the same tribe, not to mention other people from different tribes, thereby posing a challenge of misinterpretation of meaning. Also, some cultural gestures are unknown to most people outside a tribe, which could also hinder human interaction; hence there is a need to automate the recognition of Nigerian tribal greeting gestures. This work hence develops a Gaussian Blur – SVM based system capable of recognizing the Yoruba tribe greeting postures for men and women. Videos of individuals performing various greeting gestures were collected and processed into image frames. The images were resized and a Gaussian blur filter was used to remove noise from them. This research used a moment-based feature extraction algorithm to extract shape features that were passed as input to SVM. SVM is exploited and trained to perform the greeting gesture recognition task to recognize two Nigerian tribe greeting postures. To confirm the robustness of the system, 20%, 25% and 30% of the dataset acquired from the preprocessed images were used to test the system. A recognition rate of 94% could be achieved when SVM is used, as shown by the result which invariably proves that the proposed method is efficient.


Sign in / Sign up

Export Citation Format

Share Document