scholarly journals HepGentox: a novel promising HepG2 reportergene-assay for the detection of genotoxic substances in complex mixtures

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11883
Author(s):  
Elisabeth Pinter ◽  
Christina Friedl ◽  
Alexandra Irnesberger ◽  
Thomas Czerny ◽  
Tina Piwonka ◽  
...  

Background In risk assessment, genotoxicity is a key factor to determine the safety for the consumer. Most in vitro genotoxicity assays were developed for the assessment of pure substances. However, in recent years more attention has been given to complex mixtures, where usually low amounts of a substance are present. For high-throughput screening, a toxicologically sensitive assay should be used, covering a broad range of genotoxic substances and detecting them at low concentrations. HepG2 cells have been recommended as one of the prime candidates for genotoxicity testing, as they are p53 competent, less prone towards cytotoxic effects and tend to have some metabolic activity. Methods A HepG2 liver cell line was characterized for its suitability for genotoxicity assessment. For this, a luciferase based reporter gene assay revolving around the p53 pathway was validated for the analysis of pure substances and of complex mixtures. Further, the cell’s capability to detect genotoxins correctly with and without an exogenous metabolizing system, namely rat liver S9, was assessed. Results The assay proved to have a high toxicological sensitivity (87.5%) and specificity (94%). Further, the endogenous metabolizing system of the HepG2 cells was able to detect some genotoxins, which are known to depend on an enzymatic system. When complex mixtures were added this did not lead to any adverse effects concerning the assays performance and cytotoxicity was not an issue. Discussion The HepGentox proved to have a high toxicological sensitivity and specificity for the tested substances, with similar or even lower lowest effective concentration (LEC) values, compared to other regulatory mammalian assays. This combines some important aspects in one test system, while also being less time and material consuming and covering several genotoxicity endpoints. As the assay performs well with and without an exogenous metabolizing system, no animal liver fractions have to be used, which application is discussed controversially and is considered to be expensive and laborious in sample testing. Because of this, the HepGentox is suitable for a cost-efficient first screening approach to obtain important information with human cells for further approaches, with a relatively fast and easy method. Therefore, the HepGentox is a promising assay to detect genotoxic substances correctly in complex mixtures even at low concentrations, with the potential for a high throughput application. In a nutshell, as part of an in vitro bioassay test battery, this assay could provide valuable information for complex mixtures.

2020 ◽  
Author(s):  
Cristian Del Campo ◽  
Wolf-Matthias Leeder ◽  
Paul Reißig ◽  
H. Ulrich Göringer

AbstractMitochondrial gene expression in African trypanosomes and other trypanosomatid pathogens requires a U-nucleotide specific insertion/deletion-type RNA-editing reaction. The process is catalyzed by a macromolecular protein complex known as the editosome. Editosomes are restricted to the trypanosomatid clade and since editing is essential for the parasites, the protein complex represents a near perfect target for drug intervention strategies. Here we report the development of an improved in vitro assay to monitor editosome function. The test system utilizes fluorophore-labeled substrate RNAs to analyze the processing reaction by automated, high-throughput capillary electrophoresis (CE) in combination with a laser-induced fluorescence (LIF) readout. We optimized the assay for high-throughput screening (HTS)-experiments and devised a multiplex fluorophore-labeling regime to scrutinize the U-insertion/U-deletion reaction simultaneously. The assay is robust, it requires only nanogram amounts of materials and it meets all performance criteria for HTS-methods. As such the test system should be helpful in the search for trypanosome-specific pharmaceuticals.


2020 ◽  
Vol 48 (17) ◽  
pp. e99-e99
Author(s):  
Cristian Del Campo ◽  
Wolf-Matthias Leeder ◽  
Paul Reißig ◽  
H Ulrich Göringer

Abstract Mitochondrial gene expression in African trypanosomes and other trypanosomatid pathogens requires a U-nucleotide specific insertion/deletion-type RNA-editing reaction. The process is catalyzed by a macromolecular protein complex known as the editosome. Editosomes are restricted to the trypanosomatid clade and since editing is essential for the parasites, the protein complex represents a near perfect target for drug intervention strategies. Here, we report the development of an improved in vitro assay to monitor editosome function. The test system utilizes fluorophore-labeled substrate RNAs to analyze the processing reaction by automated, high-throughput capillary electrophoresis (CE) in combination with a laser-induced fluorescence (LIF) readout. We optimized the assay for high-throughput screening (HTS)-experiments and devised a multiplex fluorophore-labeling regime to scrutinize the U-insertion/U-deletion reaction simultaneously. The assay is robust, it requires only nanogram amounts of materials and it meets all performance criteria for HTS-methods. As such the test system should be helpful in the search for trypanosome-specific pharmaceuticals.


2020 ◽  
Author(s):  
Yuru Wang ◽  
Christopher D Katanski ◽  
Christopher Watkins ◽  
Jessica N Pan ◽  
Qing Dai ◽  
...  

Abstract AlkB is a DNA/RNA repair enzyme that removes base alkylations such as N1-methyladenosine (m1A) or N3-methylcytosine (m3C) from DNA and RNA. The AlkB enzyme has been used as a critical tool to facilitate tRNA sequencing and identification of mRNA modifications. As a tool, AlkB mutants with better reactivity and new functionalities are highly desired; however, previous identification of such AlkB mutants was based on the classical approach of targeted mutagenesis. Here, we introduce a high-throughput screening method to evaluate libraries of AlkB variants for demethylation activity on RNA and DNA substrates. This method is based on a fluorogenic RNA aptamer with an internal modified RNA/DNA residue which can block reverse transcription or introduce mutations leading to loss of fluorescence inherent in the cDNA product. Demethylation by an AlkB variant eliminates the blockage or mutation thereby restores the fluorescence signals. We applied our screening method to sites D135 and R210 in the Escherichia coli AlkB protein and identified a variant with improved activity beyond a previously known hyperactive mutant toward N1-methylguanosine (m1G) in RNA. We also applied our method to O6-methylguanosine (O6mG) modified DNA substrates and identified candidate AlkB variants with demethylating activity. Our study provides a high-throughput screening method for in vitro evolution of any demethylase enzyme.


Author(s):  
Olga V. Naidenko ◽  
David Q. Andrews ◽  
Alexis M. Temkin ◽  
Tasha Stoiber ◽  
Uloma Igara Uche ◽  
...  

The development of high-throughput screening methodologies may decrease the need for laboratory animals for toxicity testing. Here, we investigate the potential of assessing immunotoxicity with high-throughput screening data from the U.S. Environmental Protection Agency ToxCast program. As case studies, we analyzed the most common chemicals added to food as well as per- and polyfluoroalkyl substances (PFAS) shown to migrate to food from packaging materials or processing equipment. The antioxidant preservative tert-butylhydroquinone (TBHQ) showed activity both in ToxCast assays and in classical immunological assays, suggesting that it may affect the immune response in people. From the PFAS group, we identified eight substances that can migrate from food contact materials and have ToxCast data. In epidemiological and toxicological studies, PFAS suppress the immune system and decrease the response to vaccination. However, most PFAS show weak or no activity in immune-related ToxCast assays. This lack of concordance between toxicological and high-throughput data for common PFAS indicates the current limitations of in vitro screening for analyzing immunotoxicity. High-throughput in vitro assays show promise for providing mechanistic data relevant for immune risk assessment. In contrast, the lack of immune-specific activity in the existing high-throughput assays cannot validate the safety of a chemical for the immune system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhou Fang ◽  
Junjian Chen ◽  
Ye Zhu ◽  
Guansong Hu ◽  
Haoqian Xin ◽  
...  

AbstractPeptides are widely used for surface modification to develop improved implants, such as cell adhesion RGD peptide and antimicrobial peptide (AMP). However, it is a daunting challenge to identify an optimized condition with the two peptides showing their intended activities and the parameters for reaching such a condition. Herein, we develop a high-throughput strategy, preparing titanium (Ti) surfaces with a gradient in peptide density by click reaction as a platform, to screen the positions with desired functions. Such positions are corresponding to optimized molecular parameters (peptide densities/ratios) and associated preparation parameters (reaction times/reactant concentrations). These parameters are then extracted to prepare nongradient mono- and dual-peptide functionalized Ti surfaces with desired biocompatibility or/and antimicrobial activity in vitro and in vivo. We also demonstrate this strategy could be extended to other materials. Here, we show that the high-throughput versatile strategy holds great promise for rational design and preparation of functional biomaterial surfaces.


2015 ◽  
Vol 333 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Jennifer J. Bara ◽  
Sarah Turner ◽  
Sally Roberts ◽  
Gareth Griffiths ◽  
Rod Benson ◽  
...  

2005 ◽  
Vol 7 (2) ◽  
pp. 246-252 ◽  
Author(s):  
Ignacio Dolado ◽  
Joan Nieto ◽  
Maria João M. Saraiva ◽  
Gemma Arsequell ◽  
Gregori Valencia ◽  
...  

2016 ◽  
Vol 18 (suppl_6) ◽  
pp. vi49-vi50
Author(s):  
Choi-Fong Cho ◽  
Justin Wolfe ◽  
Colin Fazden ◽  
Kalvis Hornburg ◽  
E. Antonio Chiocca ◽  
...  

2006 ◽  
Vol 50 (4) ◽  
pp. 1586-1589 ◽  
Author(s):  
Audrey Gego ◽  
Olivier Silvie ◽  
Jean-François Franetich ◽  
Khemaïs Farhati ◽  
Laurent Hannoun ◽  
...  

ABSTRACT Plasmodium liver stages represent potential targets for antimalarial prophylactic drugs. Nevertheless, there is a lack of molecules active on these stages. We have now developed a new approach for the high-throughput screening of drug activity on Plasmodium liver stages in vitro, based on an infrared fluorescence scanning system. This method allowed us to count automatically and rapidly Plasmodium-infected hepatocytes, using different hepatic cells and different Plasmodium species, including Plasmodium falciparum. This new technique is well adapted for high-throughput drug screening and should facilitate the identification of new antimalarial compounds active on Plasmodium liver stages.


Sign in / Sign up

Export Citation Format

Share Document