scholarly journals Proteomic profiling of the endogenous peptides of MRSA and MSSA

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12508
Author(s):  
Haixia Tu ◽  
Fei Xu ◽  
Yiwei Cheng ◽  
Qianglong Pan ◽  
Xiao Cai ◽  
...  

Staphylococcus aureus is a Gram-positive bacterium that can cause diverse skin and soft tissue infections. Methicillin-resistant Staphylococcus aureus (MRSA) can cause more severe infections than methicillin-susceptible Staphylococcus aureus (MSSA). Nevertheless, the physiological and metabolic regulation of MSSA and MRSA has not been well studied. In light of the increased interest in endogenous peptides and recognition of the important roles that they play, we studied the endogenous peptidome of MSSA and MRSA. We identified 1,065 endogenous peptides, among which 435 were differentially expressed (DE), with 292 MSSA-abundant endogenous peptides and 35 MRSA-abundant endogenous peptides. MSSA-abundant endogenous peptides have significantly enriched “VXXXK” motif of at the C-terminus. MSSA-abundant endogenous peptides are involved in penicillin-binding and immune responses, whereas MRSA-abundant endogenous peptides are associated with antibiotic resistance and increased toxicity. Our characterization of the peptidome of MSSA and MRSA provides a rich resource for future studies to explore the functional regulation of drug resistance in S. aureus and may also help elucidate the mechanisms of its pathogenicity and the development of treatments.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Cecilia Kyany’a ◽  
Justin Nyasinga ◽  
Daniel Matano ◽  
Valerie Oundo ◽  
Simon Wacira ◽  
...  

Abstract Background The increase and spread of virulent-outbreak associated, methicillin and vancomycin resistant (MRSA/VRSA) Staphylococcus aureus require a better understanding of the resistance and virulence patterns of circulating and emerging strains globally. This study sought to establish the resistance phenotype, and strains of 32 non-duplicate clinical MRSA and MSSA S. aureus isolates from four Kenyan hospitals, identify their resistance and virulence genes and determine the genetic relationships of MRSA with global strains. Methods Antimicrobial susceptibility profiles were determined on a Vitek 2, genomic DNA sequenced on an Illumina Miseq and isolates typed in-silico. Resistance and virulence genes were identified using ARIBA and phylogenies generated using RAxML. Results The MRSA isolates were 100% susceptible to vancomycin, teicoplanin, linezolid, and tigecycline. Nine distinct CC, 12 ST and 15 spa types including the novel t17826 and STs (4705, 4707) were identified with CC8 and CC152 predominating. MRSA isolates distributed across 3 CCs; CC5-ST39 (1), CC8 – ST241 (4), a novel CC8-ST4705 (1), ST8 (1) and CC152 (1). There was > 90% phenotype-genotype concordance with key resistance genes identified only among MRSA isolates: gyrA, rpoB, and parC mutations, mecA, ant (4′)-lb, aph (3′)-IIIa, ermA, sat-4, fusA, mphC and msrA. Kenyan MRSA isolates were genetically diverse and most closely related to Tanzanian and UK isolates. There was a significant correlation between map, hlgA, selk, selq and cap8d virulence genes and severe infections. Conclusion The findings showed a heterogeneous S. aureus population with novel strain types. Though limited by the low number of isolates, this study begins to fill gaps and expand our knowledge of S. aureus epidemiology while uncovering interesting patterns of distribution of strain types which should be further explored. Although last-line treatments are still effective, the potential for outbreaks of both virulent and resistant strains remain, requiring sustained surveillance of S. aureus populations.


2002 ◽  
Vol 70 (6) ◽  
pp. 3290-3294 ◽  
Author(s):  
Stephen J. Libby ◽  
Marc Lesnick ◽  
Patricia Hasegawa ◽  
Michael Kurth ◽  
Christopher Belcher ◽  
...  

ABSTRACT Salmonella enterica serovar Arizona (S. enterica subspecies IIIa) is a common Salmonella isolate from reptiles and can cause serious systemic disease in humans. The spv virulence locus, found on large plasmids in Salmonella subspecies I serovars associated with severe infections, was confirmed to be located on the chromosome of serovar Arizona. Sequence analysis revealed that the serovar Arizona spv locus contains homologues of spvRABC but lacks the spvD gene and contains a frameshift in spvA, resulting in a different C terminus. The SpvR protein functions as a transcriptional activator for the spvA promoter, and SpvB and SpvC are highly conserved. The analysis supports the proposal that the chromosomal spv sequence more closely corresponds to the ancestral locus acquired during evolution of S. enterica, with plasmid acquisition of spv genes in the subspecies I strains involving addition of spvD and polymorphisms in spvA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Erick Adrian Cruz-López ◽  
Gildardo Rivera ◽  
María Antonia Cruz-Hernández ◽  
Ana Verónica Martínez-Vázquez ◽  
Graciela Castro-Escarpulli ◽  
...  

The CRISPR-Cas [clustered regularly interspaced short palindromic repeats and the CRISPR-associated genes (Cas)] system provides defense mechanisms in bacteria and archaea vs. mobile genetic elements (MGEs), such as plasmids and bacteriophages, which can either be harmful or add sequences that can provide virulence or antibiotic resistance. Staphylococcus aureus is a Gram-positive bacterium that could be the etiological agent of important soft tissue infections that can lead to bacteremia and sepsis. The role of the CRISPR-Cas system in S. aureus is not completely understood since there is a lack of knowledge about it. We analyzed 716 genomes and 1 genomic island from GENOMES-NCBI and ENA-EMBL searching for the CRISPR-Cas systems and their spacer sequences (SSs). Our bioinformatic analysis shows that only 0.83% (6/716) of the analyzed genomes harbored the CRISPR-Cas system, all of them were subtype III-A, which is characterized by the presence of the cas10/csm1 gene. Analysis of SSs showed that 91% (40/44) had no match to annotated MGEs and 9% of SSs corresponded to plasmids and bacteriophages, indicating that those phages had infected those S. aureus strains. Some of those phages have been proposed as an alternative therapy in biofilm-forming or infection with S. aureus strains, but these findings indicate that such antibiotic phage strategy would be ineffective. More research about the CRISPR/Cas system is necessary for a bigger number of S. aureus strains from different sources, so additional features can be studied.


2020 ◽  
Vol 40 (11) ◽  
Author(s):  
Relangi Tulasi Rao ◽  
Shivani Sharma ◽  
Natesan Sivakumar ◽  
Kannan Jayakumar

Abstract Background: Genomic Islands (GIs) are commonly believed to be relics of horizontal transfer and associated with specific metabolic capacities, including virulence of the strain. Horizontal gene transfer (HGT) plays a vital role in the acquisition of GIs and the evolution and adaptation of bacterial genomes. Objective: The present study was designed to predict the GIs and role of HGT in evolution of livestock-associated Staphylococcus aureus (LA-SA). Methods: GIs were predicted with two methods namely, Ensemble algorithm for Genomic Island Detection (EGID) tool, and Seq word Sniffer script. Functional characterization of GI elements was performed with clustering of orthologs. The putative donor predictions of GIs was done with the aid of the pre_GI database. Results: The present study predicted a pan of 46 GIs across the LA-SA genomes. Functional characterization of GI sequences revealed few unique results like the presence of metabolic operons like leuABCD and folPK genes in GIs and showed the importance of GIs in the adaptation to the host niche. The developed framework for GI donor prediction results revealed Rickettsia and Mycoplasma as the major donors of GI elements. Conclusions: The role of GIs during the evolutionary race of LA-SA could be concluded from the present study. Niche adaptation of LA-SA enhanced presumably due to these GIs. Future studies could focus on the evolutionary relationships between Rickettsia and Mycoplasma sp. with S. aureus and also the evolution of Leucine/Isoleucine mosaic operon (leuABCD).


Author(s):  
Fatima N. Aziz ◽  
Laith Abdul Hassan Mohammed-Jawad

Food poisoning due to the bacteria is a big global problem in economically and human's health. This problem refers to an illness which is due to infection or the toxin exists in nature and the food that use. Milk is considered a nutritious food because it contains proteins and vitamins. The aim of this study is to detect and phylogeny characterization of staphylococcal enterotoxin B gene (Seb). A total of 200 milk and cheese samples were screened. One hundred ten isolates of Staphylococcus aureus pre-confirmed using selective and differential media with biochemical tests. Genomic DNA was extracted from the isolates and the SEB gene detects using conventional PCR with specific primers. Three staphylococcus aureus isolates were found to be positive for Seb gene using PCR and confirmed by sequencing. Sequence homology showed variety range of identity starting from (100% to 38%). Phylogenetic tree analyses show that samples (6 and 5) are correlated with S. epidermidis. This study discovered that isolates (A6-RLQ and A5-RLQ) are significantly clustered in a group with non- human pathogen Staphylococcus agnetis.


Sign in / Sign up

Export Citation Format

Share Document