scholarly journals Porphyrobacter mercurialissp. nov., isolated from a stadium seat and emended description of the genusPorphyrobacter

PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1400 ◽  
Author(s):  
David A. Coil ◽  
Jennifer C. Flanagan ◽  
Andrew Stump ◽  
Alexandra Alexiev ◽  
Jenna M. Lang ◽  
...  

A novel, Gram-negative, non-spore-forming, pleomorphic yellow-orange bacterial strain was isolated from a stadium seat. Strain CoronadoTfalls within theErythrobacteraceaefamily and the genusPorphyrobacterbased on 16S rRNA phylogenetic analysis. This strain has Q-10 as the predominant respiratory lipoquinone, as do other members of the family. The fatty acid profile of this strain is similar to otherPorphyrobacter, however CoronadoTcontains predominately C18:1ω7cis and C16:0, a high percentage of the latter not being observed in any otherErythrobacteraceae. This strain is catalase-positive and oxidase-negative, can grow from 4 to 28 °C, at NaCl concentrations 0.1–1.5%, and at pH 6.0–8.0. On the basis of phenotypic and phylogenetic data presented in this study, strain CoronadoTrepresents a novel species in thePorphyrobactergenus for which the namePorphyrobacter mercurialissp. nov. is proposed; the type strain is CoronadoT(=DSMZ 29971, =LMG 28700).

Author(s):  
Yang Wang ◽  
Kundi Zhang ◽  
Feng Cai ◽  
Lei Zhang ◽  
Yali Tang ◽  
...  

A novel strain, designated 311-10T, isolated from soil of Xinjiang, China, was characterized by using a polyphasic taxonomic approach. The isolate was Gram-negative, aerobic, rod-shaped, non-motile, oxidase-negative and catalase-positive. The predominant menaquinone of strain 311-10T was MK-7 and the genomic DNA G+C content was 47.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate formed a cluster with the genera Pontibacter and [Effluviibacter] in the phylum ‘Bacteroidetes’, with sequence similarities of 93.9–95.6 %. Phylogenetic evidence and the results of phenotypic, genotypic and chemotaxonomic analyses support the reclassification of [Effluviibacter] roseus as Pontibacter roseus comb. nov. (type strain, SRC-1T=MTCC 7260T=DSM 17521T) and the establishment of a novel species, Pontibacter xinjiangensis sp. nov., with strain 311-10T (=CCTCC AB 207200T=NRRL B-51335T) as the type strain.


2004 ◽  
Vol 54 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Seung-Bong Lee ◽  
Stuart E. Strand ◽  
H. David Stensel ◽  
Russell P. Herwig

A bacterial strain, SL-1T, capable of degrading trichloroethene was isolated from a laboratory enrichment in the Department of Civil and Environmental Engineering, University of Washington, USA. The material in the enrichments was derived from a soil sample from Seattle, WA, USA. Strain SL-1T was capable of using phenol as a source of carbon and energy. Chemotaxonomic, morphological, physiological and phylogenetic analyses showed that strain SL-1T is a member of the genus Pseudonocardia. The ability of strain SL-1T to utilize phenol and degrade trichloroethene, as well as other phenotypic properties and the results from a 16S rRNA phylogenetic analysis, led to the proposal of a novel species, Pseudonocardia chloroethenivorans sp. nov. The type strain is SL-1T (=ATCC BAA-742T=DSM 44698T). Trichloroethene and other chloroethenes are major pollutants at many environmental sites, and P. chloroethenivorans has biodegradation properties that should be of interest to environmental microbiologists and engineers.


2007 ◽  
Vol 57 (10) ◽  
pp. 2216-2220 ◽  
Author(s):  
C. Alauzet ◽  
F. Mory ◽  
J.-P. Carlier ◽  
H. Marchandin ◽  
E. Jumas-Bilak ◽  
...  

Three strains of anaerobic, non-pigmented, Gram-negative bacilli isolated from various human clinical samples were characterized in terms of phenotypic and genotypic tests, including sequence analysis of 16S rRNA and rpoB genes. The strains were most closely related to the type strains of Prevotella marshii and Prevotella shahii on the basis of both 16S rRNA (89.8 and 89.0 % identity, respectively) and rpoB gene sequences (83.1 and 82.8 % identity, respectively). Phylogenetic analysis showed that the isolates constituted a robust homogeneous group distinct from known species in the genus Prevotella. The rrn skeleton (as determined by PFGE) and the DNA G+C content, determined to be 39.4 mol% for strain LBN 293T, distinguished the novel isolates from the type strains of P. marshii and P. shahii. The three strains were saccharolytic and produced acetic, lactic and succinic acids as major metabolic end products. Polyphasic investigations supported the proposal of a novel species, Prevotella nanceiensis sp. nov., with LBN 293T (=AIP 261.03T =CIP 108993T =CCUG 54409T) as the type strain.


2006 ◽  
Vol 56 (9) ◽  
pp. 2147-2152 ◽  
Author(s):  
Om Prakash ◽  
Rup Lal

A phenanthrene-degrading bacterium, strain TKPT, was isolated from a fly ash dumping site of the thermal power plant in Panki, Kanpur, India, by an enrichment culture method using phenanthrene as the sole source of carbon and energy. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belonged to the genus Sphingobium, as it showed highest sequence similarity to Sphingobium herbicidovorans DSM 11019T (97.3 %) and Sphingomonas cloacae JCM 10874T (96.5 %), compared with only 91–93 % similarity to members of other genera such as Sphingomonas sensu stricto, Novosphingobium, Sphingopyxis and Sphingosinicella. In DNA–DNA hybridization experiments with strains that were closely related phylogenetically and in terms of 16S rRNA gene sequences, i.e. Sphingobium herbicidovorans DSM 11019T and Sphingomonas cloacae JCM 10874T, strain TKPT showed less than 70 % relatedness. Strain TKPT contained sphingoglycolipids SGL-1 and SGL-2 and 18 : 1ω7c as the predominant fatty acid, with 16 : 0 as a minor component and 14 : 0 2-OH as the major 2-hydroxy fatty acid. Thus, phylogenetic analysis, DNA–DNA hybridization, fatty acid and polar lipid profiles and differences in physiological and morphological features from the most closely related members of the Sphingobium group showed that strain TKPT represents a distinct species of Sphingobium. The name Sphingobium fuliginis sp. nov. is proposed, with the type strain TKPT (=MTCC 7295T=CCM 7327T). Sphingomonas cloacae JCM 10874T formed a coherent cluster with members of Sphingobium, did not reduce nitrate to nitrite and had a fatty acid profile similar to those of Sphingobium species; hence Sphingomonas cloacae should be transferred to the genus Sphingobium as Sphingobium cloacae comb. nov., with the type strain JCM 10874T (=DSM 14926T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3683-3689 ◽  
Author(s):  
Mie Johanne Hansen ◽  
Mira Strøm Braaten ◽  
Anders Miki Bojesen ◽  
Henrik Christensen ◽  
Christian Sonne ◽  
...  

Thirty-three suspected strains of the family Pasteurellaceae isolated from the oral cavity of polar and brown bears were characterized by genotypic and phenotypic tests. Phylogenetic analysis of partial 16S rRNA gene and rpoB sequences showed that the investigated isolates formed two closely related monophyletic groups, representing two novel species of a new genus. Based on 16S rRNA gene sequence comparison Bibersteinia trehalosi was the closest related species with a validly published name, with 95.4 % similarity to the polar bear group and 94.4 % similarity to the brown bear group. Otariodibacter oris was the closest related species based on rpoB sequence comparison with a similarity of 89.8 % with the polar bear group and 90 % with the brown bear group. The new genus could be separated from existing genera of the family Pasteurellaceae by three to ten phenotypic characters, and the two novel species could be separated from each other by two phenotypic characters. It is proposed that the strains should be classified as representatives of a new genus, Ursidibacter gen. nov., with two novel species: the type species Ursidibacter maritimus sp. nov., isolated from polar bears (type strain Pb43106T = CCUG 65144T = DSM 28137T, DNA G+C content 39.3 mol%), and Ursidibacter arcticus sp. nov., isolated from brown bears (type strain Bamse61T = CCUG 65145T = DSM 28138T).


2004 ◽  
Vol 54 (5) ◽  
pp. 1669-1676 ◽  
Author(s):  
Yi-Chueh Lin ◽  
Kazunori Uemori ◽  
Dominique A. de Briel ◽  
Vallapa Arunpairojana ◽  
Akira Yokota

Seven strains of actinobacteria, isolated from soil, wounds, urine, cow faeces, human blood and butter, were characterized by a polyphasic approach to clarify their taxonomic position. On the basis of chemotaxonomy, 16S rRNA gene analysis and DNA relatedness, strain IAM 14851T can be classified within the cluster of the genus Leucobacter and is proposed as a novel species, Leucobacter albus sp. nov., with strain IAM 14851T (=TISTR 1515T) as the type strain. The other six strains formed a phylogenetically separate branch in the family Microbacteriaceae, having the following characteristics: the major menaquinones are MK-8 to MK-10, the DNA G+C content ranges from 62 to 68 mol%, the diamino acid in the cell wall is diaminobutyric acid and the muramic acid in the peptidoglycan is of the acetyl type. The major fatty acids are 12-methyltetradecanoic acid (anteiso-C15 : 0), hexadecanoic acid (C16 : 0), 14-methyl-pentadecanoic acid (iso-C16 : 0) and 14-methyl-hexadecanoic acid (anteiso-C17 : 0). On the basis of morphological, physiological and chemotaxonomic characteristics, together with DNA–DNA hybridization and 16S rRNA gene sequence comparison, the novel genus Zimmermannella gen. nov. is proposed for these six strains. Four novel species are proposed: Zimmermannella helvola sp. nov. (type species; type strain IAM 14726T=NBRC 15775T=DSM 20419T=TISTR 1509T), Zimmermannella alba sp. nov. (type strain IAM 14724T=NBRC 15616T=TISTR 1510T), Zimmermannella bifida sp. nov. (type strain IAM 14848T=TISTR 1511T) and Zimmermannella faecalis sp. nov. (type strain IAM 15030T=NBRC 15706T=ATCC 13722T=TISTR 1514T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 413-419 ◽  
Author(s):  
Yochan Joung ◽  
Haneul Kim ◽  
Heeyoung Kang ◽  
Beom-Il Lee ◽  
Tae-Seok Ahn ◽  
...  

A non-motile, yellow–orange-pigmented bacterial strain, designated HME6664T, was isolated from Lake Soyang, Republic of Korea. The major fatty acids of strain HME6664T were summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c; 44.7 %) and iso-C15 : 0 (20.2 %). The DNA G+C content was 40.8 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HME6664T formed a lineage within the genus Mucilaginibacter . Strain HME6664T was closely related to Mucilaginibacter ximonensis (96.7 %), Mucilaginibacter dorajii (96.5 %) and Mucilaginibacter lappiensis (96.3 %). On the basis of the evidence presented in this study, strain HME6664T represents a novel species of the genus Mucilaginibacter , for which the name Mucilaginibacter soyangensis sp. nov., is proposed. The type strain is HME6664T ( = KCTC 23261T = CECT 7824T).


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 870-878 ◽  
Author(s):  
Karoline Kläring ◽  
Sarah Just ◽  
Ilias Lagkouvardos ◽  
Laura Hanske ◽  
Dirk Haller ◽  
...  

Three strains of an anaerobic, Gram-stain-positive coccobacillus were isolated from the intestines of mice. These strains shared 100 % similarity in their 16S rRNA gene sequences, but were distantly related to any described members of the family Lachnospiraceae (<94 %). The most closely related species with names that have standing in nomenclature were Robinsoniella peoriensis , Ruminococcus gnavus , Blautia producta and Clostridium xylanolyticum . Phylogenetic relationships based on 16S rRNA gene sequence analysis were confirmed by partial sequencing of hsp60 genes. The use of an in-house database search pipeline revealed that the new isolates are most prevalent in bovine gut samples when compared with human and mouse samples for Ruminococcus gnavus and B. producta . All three isolated strains shared similar cellular fatty acid patterns dominated by C16 : 0 methyl ester. Differences in the proportions of C12 : 0 methyl ester, C14 : 0 methyl ester and C18 : 1 cis-11 dimethyl acetal were observed when compared with phylogenetically neighbouring species. The major short-chain fatty acid produced by strain SRB-530-5-HT was acetic acid. This strain tested positive for utilization of d-fructose, d-galacturonic acid, d-malic acid, l-alanyl l-threonine and l-glutamic acid but was negative for utilization of amygdalin, arbutin, α-d-glucose, 3-methyl d-glucose and salicin, in contrast to the type strain of the closest related species Robinsoniella peoriensis . The isolates were not able to use mannitol for growth. Based on genotypic, phenotypic and chemotaxonomic characteristics, we propose to create the new genus and species Murimonas intestini gen. nov., sp. nov. to accommodate the three strains SRB-530-5-HT ( = DSM 26524T = CCUG 63391T) (the type strain of Murimonas intestini), SRB-509-4-S-H ( = DSM 27577 = CCUG 64595) and SRB-524-4-S-H ( = DSM 27578 = CCUG 64594).


2010 ◽  
Vol 60 (3) ◽  
pp. 580-584 ◽  
Author(s):  
Muhammad Yasir ◽  
Zubair Aslam ◽  
Geun Cheol Song ◽  
Che Ok Jeon ◽  
Young Ryun Chung

A Gram-stain-negative, rod-shaped bacterium, designated strain YC7378T was isolated from vermicompost (VC) collected at Masan, Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain YC7378T grew optimally at 30 °C and at pH 6.5–8.5. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YC7378T belongs to the genus Sphingosinicella in the family Sphingomonadaceae. The most closely related strains are Sphingosinicella soli KSL-125T (95.7 %), Sphingosinicella xenopeptidilytica 3-2W4T (95.6 %) and Sphingosinicella microcystinivorans Y2T (95.5 %). Strain YC7378T contained ubiquinone Q-10 as the major respiratory quinone system and sym-homospermidine as the major polyamine. The major fatty acids of strain YC7378T were C18 : 1 ω7c, C16 : 1 ω7c and/or iso-C15 : 0 2-OH, C14 : 0 2-OH and C16 : 0. The major polar lipids were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The total DNA G+C content was 59.4 mol%. The phenotypic, phylogenetic and chemotaxonomic data showed that strain YC7378T represents a novel species of the genus Sphingosinicella, for which the name Sphingosinicella vermicomposti sp. nov. is proposed. The type strain is YC7378T (=KCTC 22446T =DSM 21593T).


2007 ◽  
Vol 57 (4) ◽  
pp. 666-674 ◽  
Author(s):  
P. J. Blackall ◽  
Anders Miki Bojesen ◽  
Henrik Christensen ◽  
Magne Bisgaard

[Pasteurella] trehalosi is an important pathogen of sheep, being primarily associated with serious systemic infections in lambs but also having an association with pneumonia. The aim of the present investigation was to characterize a broad collection of strains tentatively identified as [P.] trehalosi in order to reclassify and rename this taxon to support improvements in our understanding of the pathogenesis and epidemiology of this important organism. The type strain for [P.] trehalosi, strain NCTC 10370T, was included along with 42 field isolates from sheep (21), cattle (14), goats (1), roe deer (3) and unknown sources (3). An extended phenotypic characterization was performed on all 43 strains. Amplified fragment length polymorphism (AFLP) was also performed on the isolates. Two of the field isolates were subjected to 16S rRNA gene sequencing. These sequences, along with five existing sequences for [P.] trehalosi strains and 12 sequences for other taxa in the family Pasteurellaceae, were subjected to a phylogenetic analysis. All the isolates and the reference strains were identified as [P.] trehalosi. A total of 17 out of 22 ovine isolates produced acid from all glycosides, while only four out of 14 bovine isolates produced acid from all glycosides. All 22 ovine isolates were haemolytic and CAMP-positive, while no other isolate was haemolytic and only two bovine isolates were CAMP-positive. Nineteen AFLP types were found within the [P.] trehalosi isolates. All [P.] trehalosi isolates shared at least 70 % similarity in AFLP patterns. The largest AFLP type included the type strain and 7 ovine field isolates. Phylogenetic analysis indicated that the seven strains studied (two field isolates and the five serovar reference strains) are closely related, with 98.6 % or higher 16S rRNA gene sequence similarity. As both genotypic and phenotypic testing support the separate and distinct nature of these organisms, we propose the transfer of [P.] trehalosi to a new genus, Bibersteinia, as Bibersteinia trehalosi comb. nov. The type strain is NCTC 10370T (=ATCC 29703T). Bibersteinia trehalosi can be distinguished from the existing genera of the family by the observation of only nine characteristics; catalase, porphyrin, urease, indole, phosphatase, acid from dulcitol, (+)-d-galactose, (+)-d-mannose and (+)-d-trehalose.


Sign in / Sign up

Export Citation Format

Share Document