scholarly journals Comparative analysis of the complete chloroplast genome sequences in psammophyticHaloxylonspecies (Amaranthaceae)

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2699 ◽  
Author(s):  
Wenpan Dong ◽  
Chao Xu ◽  
Delu Li ◽  
Xiaobai Jin ◽  
Ruili Li ◽  
...  

TheHaloxylongenus belongs to the Amaranthaceae (formerly Chenopodiaceae) family. The small trees or shrubs in this genus are referred to as the King of psammophytic plants, and perform important functions in environmental protection, including wind control and sand fixation in deserts. To better understand these beneficial plants, we sequenced the chloroplast (cp) genomes ofHaloxylon ammodendron(HA) andHaloxylon persicum(HP) and conducted comparative genomic analyses on these and two other representative Amaranthaceae species. Similar to other higher plants, we found that theHaloxyloncp genome is a quadripartite, double-stranded, circular DNA molecule of 151,570 bp in HA and 151,586 bp in HP. It contains a pair of inverted repeats (24,171 bp in HA and 24,177 bp in HP) that separate the genome into a large single copy region of 84,214 bp in HA and 84,217 bp in HP, and a small single copy region of 19,014 bp in HA and 19,015 bp in HP. EachHaloxyloncp genome contains 112 genes, including 78 coding, 30 tRNA, and four ribosomal RNA genes. We detected 59 different simple sequence repeat loci, including 44 mono-nucleotide, three di-nucleotide, one tri-nucleotide, and 11 tetra-nucleotide repeats. Comparative analysis revealed only 67 mutations between the two species, including 44 substitutions, 23 insertions/deletions, and two micro-inversions. The two inversions, with lengths of 14 and 3 bp, occur in thepetA-psbJ intergenic region andrpl16 intron, respectively, and are predicted to form hairpin structures with repeat sequences of 27 and 19 bp, respectively, at the two ends. The ratio of transitions to transversions was 0.76. These results are valuable for future studies onHaloxylongenetic diversity and will enhance our understanding of the phylogenetic evolution of Amaranthaceae.

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Samaila S. Yaradua ◽  
Dhafer A. Alzahrani ◽  
Enas J. Albokhary ◽  
Abidina Abba ◽  
Abubakar Bello

The complete chloroplast genome of J. flava, an endangered medicinal plant in Saudi Arabia, was sequenced and compared with cp genome of three Acanthaceae species to characterize the cp genome, identify SSRs, and also detect variation among the cp genomes of the sampled Acanthaceae. NOVOPlasty was used to assemble the complete chloroplast genome from the whole genome data. The cp genome of J. flava was 150, 888bp in length with GC content of 38.2%, and has a quadripartite structure; the genome harbors one pair of inverted repeat (IRa and IRb 25, 500bp each) separated by large single copy (LSC, 82, 995 bp) and small single copy (SSC, 16, 893 bp). There are 132 genes in the genome, which includes 80 protein coding genes, 30 tRNA, and 4 rRNA; 113 are unique while the remaining 19 are duplicated in IR regions. The repeat analysis indicates that the genome contained all types of repeats with palindromic occurring more frequently; the analysis also identified total number of 98 simple sequence repeats (SSR) of which majority are mononucleotides A/T and are found in the intergenic spacer. The comparative analysis with other cp genomes sampled indicated that the inverted repeat regions are conserved than the single copy regions and the noncoding regions show high rate of variation than the coding region. All the genomes have ndhF and ycf1 genes in the border junction of IRb and SSC. Sequence divergence analysis of the protein coding genes showed that seven genes (petB, atpF, psaI, rpl32, rpl16, ycf1, and clpP) are under positive selection. The phylogenetic analysis revealed that Justiceae is sister to Ruellieae. This study reported the first cp genome of the largest genus in Acanthaceae and provided resources for studying genetic diversity of J. flava as well as resolving phylogenetic relationships within the core Acanthaceae.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shujie Dong ◽  
Zhiqi Ying ◽  
Shuisheng Yu ◽  
Qirui Wang ◽  
Guanghui Liao ◽  
...  

Abstract Background The Stephania tetrandra S. Moore (S. tetrandra) is a medicinal plant belonging to the family Menispermaceae that has high medicinal value and is well worth doing further exploration. The wild resources of S. tetrandra were widely distributed in tropical and subtropical regions of China, generating potential genetic diversity and unique population structures. The geographical origin of S. tetrandra is an important factor influencing its quality and price in the market. In addition, the species relationship within Stephania genus still remains uncertain due to high morphological similarity and low support values of molecular analysis approach. The complete chloroplast (cp) genome data has become a promising strategy to determine geographical origin and understand species evolution for closely related plant species. Herein, we sequenced the complete cp genome of S. tetrandra from Zhejiang Province and conducted a comparative analysis within Stephania plants to reveal the structural variations, informative markers and phylogenetic relationship of Stephania species. Results The cp genome of S. tetrandra voucher ZJ was 157,725 bp, consisting of a large single copy region (89,468 bp), a small single copy region (19,685 bp) and a pair of inverted repeat regions (24,286 bp each). A total of 134 genes were identified in the cp genome of S. tetrandra, including 87 protein-coding genes, 8 rRNA genes, 37 tRNA genes and 2 pseudogene copies (ycf1 and rps19). The gene order and GC content were highly consistent in the Stephania species according to the comparative analysis results, with the highest RSCU value in arginine (1.79) and lowest RSCU value in serine of S. tetrandra, respectively. A total of 90 SSRs have been identified in the cp genome of S. tetrandra, where repeats that consisting of A or T bases were much higher than that of G or C bases. In addition, 92 potential RNA editing sites were identified in 25 protein-coding genes, with the most predicted RNA editing sites in ndhB gene. The variations on length and expansion extent to the junction of ycf1 gene were observed between S. tetrandra vouchers from different regions, indicating potential markers for further geographical origin discrimination. Moreover, the values of transition to transversion ratio (Ts/Tv) in the Stephania species were significantly higher than 1 using Pericampylus glaucus as reference. Comparative analysis of the Stephania cp genomes revealed 5 highly variable regions, including 3 intergenic regions (trnH-psbA, trnD-trnY, trnP) and two protein coding genes (rps16 and ndhA). The identified mutational hotspots of Stephania plants exhibited multiple SNP sites and Gaps, as well as different Ka/Ks ratio values. In addition, five pairs of specific primers targeting the divergence regions were accordingly designed, which could be utilized as potential molecular markers for species identification, population genetic and phylogenetic analysis in Stephania species. Phylogenetic tree analysis based on the conserved chloroplast protein coding genes indicated a sister relationship between S. tetrandra and the monophyletic group of S. japonica and S. kwangsiensis with high support values, suggesting a close genetic relationship within Stephania plants. However, two S. tetrandra vouches from different regions failed to cluster into one clade, confirming the occurrences of genetic diversities and requiring further investigation for geographical tracing strategy. Conclusions Overall, we provided comprehensive and detailed information on the complete chloroplast genome and identified nucleotide diversity hotspots of Stephania species. The obtained genetic resource of S. tetrandra from Zhejiang Province would facilitate future studies in DNA barcode, species discrimination, the intraspecific and interspecific variability and the phylogenetic relationships of Stephania plants.


Author(s):  
Liu Li ◽  
Yang Yang ◽  
Li Xiujie ◽  
Li Bo

Vitis vinifera ‘Guifeimeigui’ is a diploid table grape, a Eurasian species. This research first reported the complete chloroplast (cp) genome of Vitis vinifera ‘Guifeimeigui’. The size of the complete cp genome is 160,928 bp and its GC content is 37.38%, including a pair of inverted repeats (26,353 bp each) separated by large (89,150 bp) and small (19,072 bp) single-copy regions. It encodes 85 genes, including 40 protein coding genes, 37 transfer RNA genes (tRNA), and 8 ribosomal RNA genes (rRNA). The Maximum Likelihood (ML) phylogenetic tree demonstrated that Vitis vinifera ‘Guifeimeigui’ is close to Vitis vinifera.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Lu Wang ◽  
Na He ◽  
Yao Li ◽  
Yanming Fang ◽  
Feilong Zhang

Chinese lacquer tree (Toxicodendron vernicifluum) is an important commercial arbor species widely cultivated in East Asia for producing highly durable lacquer. Here, we sequenced and analyzed the complete chloroplast (cp) genome of T. vernicifluum and reconstructed the phylogeny of Sapindales based on 52 cp genomes of six families. The plastome of T. vernicifluum is 159,571 bp in length, including a pair of inverted repeats (IRs) of 26,511 bp, separated by a large single-copy (LSC) region of 87,475 bp and a small single-copy (SSC) region of 19,074 bp. A total of 126 genes were identified, of which 81 are protein-coding genes, 37 are transfer RNA genes, and eight are ribosomal RNA genes. Forty-nine mononucleotide microsatellites, one dinucleotide microsatellite, two complex microsatellites, and 49 long repeats were determined. Structural differences such as inversion variation in LSC and gene loss in IR were detected across cp genomes of the six genera in Anacardiaceae. Phylogenetic analyses revealed that the genus Toxicodendron is closely related to Pistacia and Rhus. The phylogenetic relationships of the six families in Sapindales were well resolved. Overall, this study providing complete cp genome resources will be beneficial for determining potential molecular markers and evolutionary patterns of T. vernicifluum and its closely related species.


2021 ◽  
Vol 51 (3) ◽  
pp. 332-336
Author(s):  
Yoo-Jung PARK ◽  
Kyeong-Sik CHEON

The complete chloroplast (cp) genome sequence of Neolitsea sericea was determined by Illumina sequencing. The complete cp genome was 152,446bp in length, containing a large single-copy region of 93,796 bp and a small single-copy region of 18,506bp, which were separated by a pair of 20,072bp inverted repeats. A total of 112 unique genes were annotated, including 78 protein-coding genes (PCGs), 30 transfer RNAs, and four ribosomal RNAs. Among the PCGs, 18 genes contained one or two introns. A very low level of sequence variation between two cp genomes of N. sericea was found with seven insertions or deletions and only one single nucleotide polymorphism. An analysis using the maximum likelihood method showed that N. sericea was closely related to Actinodaphne trichocarpa.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2426 ◽  
Author(s):  
Xiaofeng Shen ◽  
Shuai Guo ◽  
Yu Yin ◽  
Jingjing Zhang ◽  
Xianmei Yin ◽  
...  

We sequenced and analyzed the complete chloroplast genome of Aster tataricus (family Asteraceae), a Chinese herb used medicinally to relieve coughs and reduce sputum. The A. tataricus chloroplast genome was 152,992 bp in size, and harbored a pair of inverted repeat regions (IRa and IRb, each 24,850 bp) divided into a large single-copy (LSC, 84,698 bp) and a small single-copy (SSC, 18,250 bp) region. Our annotation revealed that the A. tataricus chloroplast genome contained 115 genes, including 81 protein-coding genes, 4 ribosomal RNA genes, and 30 transfer RNA genes. In addition, 70 simple sequence repeats (SSRs) were detected in the A. tataricus chloroplast genome, including mononucleotides (36), dinucleotides (1), trinucleotides (23), tetranucleotides (1), pentanucleotides (8), and hexanucleotides (1). Comparative chloroplast genome analysis of three Aster species indicated that a higher similarity was preserved in the IR regions than in the LSC and SSC regions, and that the differences in the degree of preservation were slighter between A. tataricus and A. altaicus than between A. tataricus and A. spathulifolius. Phylogenetic analysis revealed that A. tataricus was more closely related to A. altaicus than to A. spathulifolius. Our findings offer valuable information for future research on Aster species identification and selective breeding.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 861
Author(s):  
Huijuan Zhou ◽  
Xiaoxiao Gao ◽  
Keith Woeste ◽  
Peng Zhao ◽  
Shuoxin Zhang

Chloroplast (cp) DNA genomes are traditional workhorses for studying the evolution of species and reconstructing phylogenetic relationships in plants. Species of the genus Castanea (chestnuts and chinquapins) are valued as a source of nuts and timber wherever they grow, and chestnut species hybrids are common. We compared the cp genomes of C. mollissima, C. seguinii, C. henryi, and C. pumila. These cp genomes ranged from 160,805 bp to 161,010 bp in length, comprising a pair of inverted repeat (IR) regions (25,685 to 25,701 bp) separated by a large single-copy (LSC) region (90,440 to 90,560 bp) and a small single-copy (SSC) region (18,970 to 19,049 bp). Each cp genome encoded the same 113 genes; 82–83 protein-coding genes, 30 transfer RNA genes, and four ribosomal RNA genes. There were 18 duplicated genes in the IRs. Comparative analysis of cp genomes revealed that rpl22 was absent in all analyzed species, and the gene ycf1 has been pseudo-genized in all Chinese chestnuts except C. pumlia. We analyzed the repeats and nucleotide substitutions in these plastomes and detected several highly variable regions. The phylogenetic analyses based on plastomes confirmed the monophyly of Castanea species.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ueric José Borges de Souza ◽  
Rhewter Nunes ◽  
Cíntia Pelegrineti Targueta ◽  
José Alexandre Felizola Diniz-Filho ◽  
Mariana Pires de Campos Telles

Abstract Stryphnodendron adstringens is a medicinal plant belonging to the Leguminosae family, and it is commonly found in the southeastern savannas, endemic to the Cerrado biome. The goal of this study was to assemble and annotate the chloroplast genome of S. adstringens and to compare it with previously known genomes of the mimosoid clade within Leguminosae. The chloroplast genome was reconstructed using de novo and referenced-based assembly of paired-end reads generated by shotgun sequencing of total genomic DNA. The size of the S. adstringens chloroplast genome was 162,169 bp. This genome included a large single-copy (LSC) region of 91,045 bp, a small single-copy (SSC) region of 19,014 bp and a pair of inverted repeats (IRa and IRb) of 26,055 bp each. The S. adstringens chloroplast genome contains a total of 111 functional genes, including 77 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes. A total of 137 SSRs and 42 repeat structures were identified in S. adstringens chloroplast genome, with the highest proportion in the LSC region. A comparison of the S. adstringens chloroplast genome with those from other mimosoid species indicated that gene content and synteny are highly conserved in the clade. The phylogenetic reconstruction using 73 conserved coding-protein genes from 19 Leguminosae species was supported to be paraphyletic. Furthermore, the noncoding and coding regions with high nucleotide diversity may supply valuable markers for molecular evolutionary and phylogenetic studies at different taxonomic levels in this group.


Diversity ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 405
Author(s):  
Wei Ren ◽  
Dongquan Guo ◽  
Guojie Xing ◽  
Chunming Yang ◽  
Yuanyu Zhang ◽  
...  

Cyperus esculentus produces large amounts of oil as one of the main oil storage reserves in underground tubers, making this crop species not only a promising resource for edible oil and biofuel in food and chemical industry, but also a model system for studying oil accumulation in non-seed tissues. In this study, we determined the chloroplast genome sequence of the cultivated C. esculentus (var. sativus Boeckeler). The results showed that the complete chloroplast genome of C. esculentus was 186,255 bp in size, and possessed a typical quadripartite structure containing one large single copy (100,940 bp) region, one small single copy (10,439 bp) region, and a pair of inverted repeat regions of 37,438 bp in size. Sequence analyses indicated that the chloroplast genome encodes 141 genes, including 93 protein-coding genes, 40 transfer RNA genes, and 8 ribosomal RNA genes. We also identified 396 simple-sequence repeats and 49 long repeats, including 15 forward repeats and 34 palindromes within the chloroplast genome of C. esculentus. Most of these repeats were distributed in the noncoding regions. Whole chloroplast genome comparison with those of the other four Cyperus species indicated that both the large single copy and inverted repeat regions were more divergent than the small single copy region, with the highest variation found in the inverted repeat regions. In the phylogenetic trees based on the complete chloroplast genomes of 13 species, all five Cyperus species within the Cyperaceae formed a clade, and C. esculentus was evolutionarily more related to C. rotundus than to the other three Cyperus species. In summary, the chloroplast genome sequence of the cultivated C. esculentus provides a valuable genomic resource for species identification, evolution, and comparative genomic research on this crop species and other Cyperus species in the Cyperaceae family.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhongyu Du ◽  
Ke Lu ◽  
Kai Zhang ◽  
Yiming He ◽  
Haitao Wang ◽  
...  

Abstract Background Limited access to genetic information has greatly hindered our understanding of the molecular evolution, phylogeny, and differentiation time of subg. Amygdalus. This study reported complete chloroplast (cp) genome sequences of subg. Amygdalus, which further enriched the available valuable resources of complete cp genomes of higher plants and deepened our understanding of the divergence time and phylogenetic relationships of subg. Amygdalus. Results The results showed that subg. Amygdalus species exhibited a tetrad structure with sizes ranging from 157,736 bp (P. kansuensis) to 158,971 bp (P. davidiana), a pair of inverted repeat regions (IRa/IRb) that ranged from 26,137–26,467 bp, a large single-copy region that ranged from 85,757–86,608 bp, and a small single-copy region that ranged from 19,020–19,133 bp. The average GC content of the complete cp genomes in the 12 species was 36.80%. We found that the structure of the subg. Amygdalus complete cp genomes was highly conserved, and the 12 subg. Amygdalus species had an rps19 pseudogene. There was not rearrangement of the complete cp genome in the 12 subg. Amygdalus species. All 12 subg. Amygdalus species clustered into one clade based on both Bayesian inference and maximum likelihood. The divergence time analyses based on the complete cp genome sequences showed that subg. Amygdalus species diverged approximately 15.65 Mya. Conclusion Our results provide data on the genomic structure of subg. Amygdalus and elucidates their phylogenetic relationships and divergence time.


Sign in / Sign up

Export Citation Format

Share Document