Genomic evidence of bitter taste in snakes and phylogenetic analysis of bitter taste receptor genes in reptiles
As nontraditional model organisms with extreme physiological and morphological phenotypes, snakes are believed to possess an inferior taste system. However, the bitter taste sensation is essential to distinguish the nutritious and poisonous food resources and the genomic evidence of bitter taste in snakes is largely scarce. To explore the genetic basis of the bitter taste of snakes and characterize the evolution of bitter taste receptor genes (Tas2rs) in reptiles, we identifiedTas2rgenes in 19 genomes (species) corresponding to three orders of non-avian reptiles. Our results indicated contractions ofTas2rgene repertoires in snakes, however dramatic gene expansions have occurred in lizards. Phylogenetic analysis of theTas2rs with NJ and BI methods revealed thatTas2rgenes of snake species formed two clades, whereas in lizards theTas2rgenes clustered into two monophyletic clades and four large clades. Evolutionary changes (birth and death) of intactTas2rgenes in reptiles were determined by reconciliation analysis. Additionally, the taste signaling pathway calcium homeostasis modulator 1 (Calhm1) gene of snakes was putatively functional, suggesting that snakes still possess bitter taste sensation. Furthermore, Phylogenetically Independent Contrasts (PIC) analyses reviewed a significant correlation between the number ofTas2rgenes and the amount of potential toxins in reptilian diets, suggesting that insectivores such as some lizards may require moreTas2rs genes than omnivorous and carnivorous reptiles.