scholarly journals Water absorption through salivary gland type I acini in the blacklegged tick, Ixodes scapularis

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3984 ◽  
Author(s):  
Donghun Kim ◽  
Paulina Maldonado-Ruiz ◽  
Ludek Zurek ◽  
Yoonseong Park

Tick salivary glands play critical roles in maintaining water balance for survival, as they eliminate excess water and ions during blood feeding on hosts. In the long duration of fasting in the off-host period, ticks secrete hygroscopic saliva into the mouth cavity to uptake atmospheric water vapor. Type I acini of tick salivary glands are speculated to be involved in secretion of hygroscopic saliva based on ultrastructure studies. However, we recently proposed that type I acini play a role in resorption of water/ions from the primary saliva produced by other salivary acini (i.e., types II and III) during the tick blood feeding phase. In this study, we tested the function of type I acini in unfed female Ixodes scapularis. The route of ingested water was tracked after forced feeding of water with fluorescent dye rhodamine123. We found that type-I acini of the salivary glands, but not type II and III, are responsible for water uptake. In addition, the ingestion of water through the midgut was also observed. Injection or feeding of ouabain, a Na/K-ATPase inhibitor, suppressed water absorption in type I acini. When I. scapularis was offered a droplet of water, ticks rarely imbibed water directly (5%), while some approached the water droplet to use the high humidity formed in the vicinity of the droplet (23%). We conclude that during both on- and off-host stages, type I acini in salivary glands of female Ixodes scapularis absorb water and ions.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. e02628-18 ◽  
Author(s):  
Jeffrey M. Grabowski ◽  
Olof R. Nilsson ◽  
Elizabeth R. Fischer ◽  
Dan Long ◽  
Danielle K. Offerdahl ◽  
...  

ABSTRACT The Ixodes scapularis tick transmits a number of pathogens, including tick-borne flaviviruses (TBFVs). In the United States, confirmed human infections with the Powassan virus (POWV) TBFV have a fatality rate of ∼10% and are increasing in incidence. Tick salivary glands (SGs) serve as an organ barrier to TBFV transmission, and little is known regarding the location of TBFV infection in SGs from fed ticks. Previous studies showed I. scapularis vanin (VNN) involved with TBFV infection of I. scapularis ISE6 embryonic cells, suggesting a potential role for this gene. The overall goal of this study was to use SG cultures to compare data on TBFV biology in SGs from fully engorged, replete (fed) ticks and from unfed ticks. TBFV multiplication was higher in SGs from fed ticks than in those from unfed ticks. Virus-like particles were observed only in granular acini of SGs from unfed ticks. The location of TBFV infection of SGs from fed ticks was observed in cells lining lobular ducts and trachea but not observed in acini. Transcript knockdown of VNN decreased POWV multiplication in infected SG cultures from both fed and unfed ticks. This work was the first to identify localization of TBFV multiplication in SG cultures from a fed tick and a tick transcript important for POWV multiplication in the tick SG, an organ critical for TBFV transmission. This research exemplifies the use of SG cultures in deciphering TBFV biology in the tick and as a translational tool for screening and identifying potential tick genes as potential countermeasure targets. IMPORTANCE Tick-borne flaviviruses (TBFVs) are responsible for more than 15,000 human disease cases each year, and Powassan virus lineage 2 (POWV-L2) deer tick virus has been a reemerging threat in North America over the past 20 years. Rapid transmission of TBFVs in particular emphasizes the importance of preventing tick bites, the difficulty in developing countermeasures to prevent transmission, and the importance of understanding TBFV infection in tick salivary glands (SGs). Tick blood feeding is responsible for phenomenal physiological changes and is associated with changes in TBFV multiplication within the tick and in SGs. Using SG cultures from Ixodes scapularis female ticks, the primary aims of this study were to identify cellular localization of virus-like particles in acini of infected SGs from fed and unfed ticks, localization of TBFV infection in infected SGs from fed ticks, and a tick transcript (with associated metabolic function) involved in POWV-L2 infection in SG cultures.



2018 ◽  
Author(s):  
Thorben Lundsgaard

SummaryTaastrup virus (TV) is a novel virus belonging to Mononegavirales and with filovirus-like morphology. In adult Psammotettix alienus infected with TV, the highest concentration of virus particles was found in salivary glands, consisting of a principal gland (type I-VI-cells) and an accessory gland. Examination of thin sections revealed enveloped particles, about 1300 nm long and 62 nm in diameter, located singly or in paracrystalline arrays in canaliculi of type III- and IV-cells. In gland cells with TV particles in canaliculi, granular masses up to 15 micrometer in diameter are present in the cytoplasm. These masses are believed to be viroplasms, the sites for viral replication. TV particles were observed at the connection between a canaliculus and the salivary duct system.



2006 ◽  
Vol 203 (6) ◽  
pp. 1507-1517 ◽  
Author(s):  
Bindu Sukumaran ◽  
Sukanya Narasimhan ◽  
John F. Anderson ◽  
Kathleen DePonte ◽  
Nancy Marcantonio ◽  
...  

Anaplasma phagocytophilum is the agent of human anaplasmosis, the second most common tick-borne illness in the United States. This pathogen, which is closely related to obligate intracellular organisms in the genera Rickettsia, Ehrlichia, and Anaplasma, persists in ticks and mammalian hosts; however, the mechanisms for survival in the arthropod are not known. We now show that A. phagocytophilum induces expression of the Ixodes scapularis salp16 gene in the arthropod salivary glands during vector engorgement. RNA interference–mediated silencing of salp16 gene expression interfered with the survival of A. phagocytophilum that entered ticks fed on A. phagocytophilum–infected mice. A. phagocytophilum migrated normally from A. phagocytophilum–infected mice to the gut of engorging salp16-deficient ticks, but up to 90% of the bacteria that entered the ticks were not able to successfully infect I. scapularis salivary glands. These data demonstrate the specific requirement of a pathogen for a tick salivary protein to persist within the arthropod and provide a paradigm for understanding how Rickettsia-like pathogens are maintained within vectors.



Author(s):  
Rosemarie Rosell-Davis ◽  
Lewis B. Coons ◽  
Glen R. Needham

Tick salivary glands are the principal organs through which pathogens are transmitted to the vertebrate host. Salivary glands of the argasid nymph, O. moubata, consists of grape-like clusters of two morphologically distinct types of acini; agranular or Type I and granular or Type II. Type I acini have an unknown function but in ixodids they produce a hydroscopic fluid used by the tick to take up moisture from the atmosphere. Type II acini secrete a fluid that contains an anticoagulant and pharmacologically active substances. The purpose of this study is to describe the ultrastructure of both types of acini using the nomenclature developed for ixodid salivary glands by Needham and Coons and Fawcett, et al.



2015 ◽  
Vol 86 (2) ◽  
pp. 131-144 ◽  
Author(s):  
Zachary N. Ghahramani ◽  
Miky Timothy ◽  
Gurpreet Kaur ◽  
Michelle Gorbonosov ◽  
Alena Chernenko ◽  
...  

Catecholamines, which include the neurotransmitters dopamine and noradrenaline, are known modulators of sensorimotor function, reproduction, and sexually motivated behaviors across vertebrates, including vocal-acoustic communication. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the vocal motor system in the plainfin midshipman fish Porichthys notatus, a seasonal breeding marine teleost that produces vocal signals for social communication. There are 2 distinct male reproductive morphs in this species: type I males establish nests and court females with a long-duration advertisement call, while type II males sneak spawn to steal fertilizations from type I males. Like females, type II males can only produce brief, agonistic, grunt type vocalizations. Here, we tested the hypothesis that intrasexual differences in the number of CA neurons and their fiber innervation patterns throughout the vocal motor pathway may provide neural substrates underlying divergence in reproductive behavior between morphs. We employed immunofluorescence (-ir) histochemistry to measure tyrosine hydroxylase (TH; a rate-limiting enzyme in catecholamine synthesis) neuron numbers in several forebrain and hindbrain nuclei as well as TH-ir fiber innervation throughout the vocal pathway in type I and type II males collected from nests during the summer reproductive season. After controlling for differences in body size, only one group of CA neurons displayed an unequivocal difference between male morphs: the extraventricular vagal-associated TH-ir neurons, located just lateral to the dimorphic vocal motor nucleus (VMN), were significantly greater in number in type II males. In addition, type II males exhibited greater TH-ir fiber density within the VMN and greater numbers of TH-ir varicosities with putative contacts on vocal motor neurons. This strong inverse relationship between the predominant vocal morphotype and the CA innervation of vocal motor neurons suggests that catecholamines may function to inhibit vocal output in midshipman. These findings support catecholamines as direct modulators of vocal behavior, and differential CA input appears reflective of social and reproductive behavioral divergence between male midshipman morphs.



2001 ◽  
Vol 184 (8) ◽  
pp. 1056-1064 ◽  
Author(s):  
Subrata Das ◽  
Gautam Banerjee ◽  
Kathleen DePonte ◽  
Nancy Marcantonio ◽  
Fred S. Kantor ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document