scholarly journals The impact of self-incompatibility systems on the prevention of biparental inbreeding

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4085
Author(s):  
Tara N. Furstenau ◽  
Reed A. Cartwright

Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system—homomorphic SI—can also reduce biparental inbreeding. Homomorphic SI is found in many angiosperm species, and it is often assumed that the additional benefit of reduced biparental inbreeding may be a factor in the success of this SI system. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations that displayed three different types of homomorphic SI. We measured the total level of inbreeding avoidance by comparing each population to a self-compatible population (NSI), and we measured biparental inbreeding avoidance by comparing to a population of self-incompatible plants that were free to mate with any other individual (PSI). Because biparental inbreeding is more common when offspring dispersal is limited, we examined the levels of biparental inbreeding over a range of dispersal distances. We also tested whether the introduction of inbreeding depression affected the level of biparental inbreeding avoidance. We found that there was a statistically significant decrease in autozygosity in each of the homomorphic SI populations compared to the PSI population and, as expected, this was more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression were not reduced. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Overall, our simulations showed that the homomorphic SI systems had little impact on the amount of biparental inbreeding in the population especially when compared to the overall reduction in inbreeding compared to the NSI population. With further study, this observation may have important consequences for research into the origin and evolution of homomorphic self-incompatibility systems.

2017 ◽  
Author(s):  
Tara N Furstenau ◽  
Reed A Cartwright

Hermaphroditic plants experience inbreeding through both self-fertilization and bi-parental inbreeding. Therefore, many plant species have evolved either heteromorphic (morphology-based) or homomorphic (molecular-based) self-incompatibility (SI) systems. These SI systems limit extreme inbreeding through self-fertilization and, in the case of homomorphic SI systems, have the potential to limit bi-parental inbreeding, which is common when dispersal is restricted to a local region. Homomorphic SI species are prevalent across the angiosperms, and it is often assumed that the potential to reduce bi-parental inbreeding may be a factor in their success. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations with either heteromorphic SI or one of three different types of homomorphic SI. In our simulations, we varied dispersal distance and the presence of inbreeding depression. We found that autozygosity in the homomorphic SI populations was significantly lower than in the heteromorphic SI populations and that this reduction was due to bi-parental inbreeding avoidance. As expected, the differences between the homomorphic and heteromorphic SI populations were more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression between these plant populations were not different. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Our results suggest that bi-parental inbreeding avoidance was unlikely to be a major driver in the evolution of homomorphic SI systems.


2017 ◽  
Author(s):  
Tara N Furstenau ◽  
Reed A Cartwright

Hermaphroditic plants experience inbreeding through both self-fertilization and bi-parental inbreeding. Therefore, many plant species have evolved either heteromorphic (morphology-based) or homomorphic (molecular-based) self-incompatibility (SI) systems. These SI systems limit extreme inbreeding through self-fertilization and, in the case of homomorphic SI systems, have the potential to limit bi-parental inbreeding, which is common when dispersal is restricted to a local region. Homomorphic SI species are prevalent across the angiosperms, and it is often assumed that the potential to reduce bi-parental inbreeding may be a factor in their success. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations with either heteromorphic SI or one of three different types of homomorphic SI. In our simulations, we varied dispersal distance and the presence of inbreeding depression. We found that autozygosity in the homomorphic SI populations was significantly lower than in the heteromorphic SI populations and that this reduction was due to bi-parental inbreeding avoidance. As expected, the differences between the homomorphic and heteromorphic SI populations were more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression between these plant populations were not different. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Our results suggest that bi-parental inbreeding avoidance was unlikely to be a major driver in the evolution of homomorphic SI systems.


Genetics ◽  
2000 ◽  
Vol 154 (2) ◽  
pp. 893-907
Author(s):  
Sara R Lipow ◽  
Robert Wyatt

Abstract Most individuals of Asclepias exaltata are self-sterile, but all plants lack prezygotic barriers to self-fertilization. To determine whether postzygotic rejection of self-fertilized ovules is due to late-acting self-incompatibility or to extreme, early acting inbreeding depression, we performed three diallel crosses among self-sterile plants related as full-sibs. The full-sibs segregated into four compatibility classes, suggesting that late acting self-incompatibility is controlled by a single gene (S-locus). Crosses between plants sharing one or both alleles at the S-locus are incompatible. An additional diallel cross was done among full-sib progeny from a cross of a self-sterile and a self-fertile plant. These progeny grouped into two compatibility classes, and plants within classes displayed varying levels of self-fertility. This suggests that the occasional self-fertility documented in natural pollinations is caused by pseudo-self-fertility alleles that alter the functioning of the S-locus.


2007 ◽  
Vol 23 (5) ◽  
pp. 603-606 ◽  
Author(s):  
David W. Kikuchi ◽  
Eloisa Lasso ◽  
James W. Dalling ◽  
Nadav Nur

The genus Piper is an important component of tropical forests worldwide. Many Piper species have been reported as self-compatible (Figueiredo & Sazima 2000), and many have the ability to reproduce asexually, forming clonal aggregations (Grieg 1993). Furthermore, the main dispersers of Piper (bats) transport whole infructescences to feeding roosts (Fleming & Heithaus 1981), tending to disperse closely related seeds in clumps. These characteristics of Piper biology are likely to result in populations with strongly marked spatial genetic structure, and raise the potential for inbreeding depression through self-fertilization. A few studies using allozymes to evaluate spatial genetic structure in Piper spp. support this view. These studies indicate that populations separated by more than 1 km are genetically distinct (high FST values; Wright 1943) and that for some species inbreeding could be substantial (high values of FIS and FIT; Heywood & Fleming 1986, Mariot et al. 2002). However, the contributions of limited pollen and seed dispersal to generating spatial genetic structure remain unknown. Estimates of seed dispersal probabilities by Carollia perspicillata (Phyllostomidae) bats on Barro Colorado Island (BCI), Panama, and at Santa Rosa, Costa Rica, indicate that Piper dispersers move most seeds 50–300 m from the parent plant, with occasional long-distance events of > 1 km (Fleming 1981, Thies 1998). However, no studies have assessed how far Piper flower visitors move pollen. If seed dispersal is limited, and clonal reproduction is common, then long-distance pollen transfer may play a critical role in preventing inbreeding depression in Piper populations.


2019 ◽  
Author(s):  
Diala Abu Awad ◽  
Denis Roze

ABSTRACTInbreeding depression resulting from partially recessive deleterious alleles is thought to be the main genetic factor preventing self-fertilizing mutants from spreading in outcrossing hermaphroditic populations. However, deleterious alleles may also generate an advantage to selfers in terms of more efficient purging, while the effects of epistasis among those alleles on inbreeding depression and mating system evolution remain little explored. In this paper, we use a general model of selection to disentangle the effects of different forms of epistasis (additive-by-additive, additive-by-dominance and dominance-by-dominance) on inbreeding depression and on the strength of selection for selfing. Models with fixed epistasis across loci, and models of stabilizing selection acting on quantitative traits (generating distributions of epistasis) are considered as special cases. Besides its effects on inbreeding depression, epistasis may increase the purging advantage associated with selfing (when it is negative on average), while the variance in epistasis favors selfing through the generation of linkage disequilibria that increase mean fitness. Approximations for the strengths of these effects are derived, and compared with individual-based simulation results.


Evolution ◽  
2015 ◽  
Vol 69 (11) ◽  
pp. 2846-2861 ◽  
Author(s):  
Jane M. Reid ◽  
Peter Arcese ◽  
Greta Bocedi ◽  
A. Bradley Duthie ◽  
Matthew E. Wolak ◽  
...  

2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Emmanuel A. Lozada-Soto ◽  
Christian Maltecca ◽  
Duc Lu ◽  
Stephen Miller ◽  
John B. Cole ◽  
...  

Abstract Background While the adoption of genomic evaluations in livestock has increased genetic gain rates, its effects on genetic diversity and accumulation of inbreeding have raised concerns in cattle populations. Increased inbreeding may affect fitness and decrease the mean performance for economically important traits, such as fertility and growth in beef cattle, with the age of inbreeding having a possible effect on the magnitude of inbreeding depression. The purpose of this study was to determine changes in genetic diversity as a result of the implementation of genomic selection in Angus cattle and quantify potential inbreeding depression effects of total pedigree and genomic inbreeding, and also to investigate the impact of recent and ancient inbreeding. Results We found that the yearly rate of inbreeding accumulation remained similar in sires and decreased significantly in dams since the implementation of genomic selection. Other measures such as effective population size and the effective number of chromosome segments show little evidence of a detrimental effect of using genomic selection strategies on the genetic diversity of beef cattle. We also quantified pedigree and genomic inbreeding depression for fertility and growth. While inbreeding did not affect fertility, an increase in pedigree or genomic inbreeding was associated with decreased birth weight, weaning weight, and post-weaning gain in both sexes. We also measured the impact of the age of inbreeding and found that recent inbreeding had a larger depressive effect on growth than ancient inbreeding. Conclusions In this study, we sought to quantify and understand the possible consequences of genomic selection on the genetic diversity of American Angus cattle. In both sires and dams, we found that, generally, genomic selection resulted in decreased rates of pedigree and genomic inbreeding accumulation and increased or sustained effective population sizes and number of independently segregating chromosome segments. We also found significant depressive effects of inbreeding accumulation on economically important growth traits, particularly with genomic and recent inbreeding.


Sign in / Sign up

Export Citation Format

Share Document