Pollinators and pollen dispersal of Piper dilatatum (Piperaceae) on Barro Colorado Island, Panama

2007 ◽  
Vol 23 (5) ◽  
pp. 603-606 ◽  
Author(s):  
David W. Kikuchi ◽  
Eloisa Lasso ◽  
James W. Dalling ◽  
Nadav Nur

The genus Piper is an important component of tropical forests worldwide. Many Piper species have been reported as self-compatible (Figueiredo & Sazima 2000), and many have the ability to reproduce asexually, forming clonal aggregations (Grieg 1993). Furthermore, the main dispersers of Piper (bats) transport whole infructescences to feeding roosts (Fleming & Heithaus 1981), tending to disperse closely related seeds in clumps. These characteristics of Piper biology are likely to result in populations with strongly marked spatial genetic structure, and raise the potential for inbreeding depression through self-fertilization. A few studies using allozymes to evaluate spatial genetic structure in Piper spp. support this view. These studies indicate that populations separated by more than 1 km are genetically distinct (high FST values; Wright 1943) and that for some species inbreeding could be substantial (high values of FIS and FIT; Heywood & Fleming 1986, Mariot et al. 2002). However, the contributions of limited pollen and seed dispersal to generating spatial genetic structure remain unknown. Estimates of seed dispersal probabilities by Carollia perspicillata (Phyllostomidae) bats on Barro Colorado Island (BCI), Panama, and at Santa Rosa, Costa Rica, indicate that Piper dispersers move most seeds 50–300 m from the parent plant, with occasional long-distance events of > 1 km (Fleming 1981, Thies 1998). However, no studies have assessed how far Piper flower visitors move pollen. If seed dispersal is limited, and clonal reproduction is common, then long-distance pollen transfer may play a critical role in preventing inbreeding depression in Piper populations.

Heredity ◽  
2008 ◽  
Vol 102 (3) ◽  
pp. 274-285 ◽  
Author(s):  
S L Krauss ◽  
T He ◽  
L G Barrett ◽  
B B Lamont ◽  
N J Enright ◽  
...  

2018 ◽  
Vol 8 (16) ◽  
pp. 7800-7816 ◽  
Author(s):  
Marcela A. Moraes ◽  
Thaisa Y. K. Kubota ◽  
Bruno C. Rossini ◽  
Celso L. Marino ◽  
Miguel L. M. Freitas ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Rainbow DeSilva ◽  
Richard S. Dodd

Research Highlights: Patterns of dispersal shape the distribution and temporal development of genetic diversity both within and among populations. In an era of unprecedented environmental change, the maintenance of extant genetic diversity is crucial to population persistence. Background and Objectives: We investigate patterns of pollen dispersal and spatial genetic structure within populations of giant sequoia (Sequoiadendron giganteum). Materials and Methods: The leaf genotypes of established trees from twelve populations were used to estimate the extent of spatial genetic structure within populations, as measured by the Sp statistic. We utilized progeny arrays from five populations to estimate mating parameters, the diversity of the pollen pool, and characteristics of pollen dispersal. Results: Our research indicates that giant sequoia is predominantly outcrossing, but exhibits moderate levels of bi-parental inbreeding (0.155). The diversity of the pollen pool is low, with an average of 7.5 pollen donors per mother tree. As revealed by the Sp-statistic, we find significant genetic structure in ten of twelve populations examined, which indicates the clustering of related individuals at fine spatial scales. Estimates of pollen and gene dispersal indicate predominantly local dispersal, with the majority of pollen dispersal <253 m, and with some populations showing fat-tailed dispersal curves, suggesting potential for long-distance dispersal. Conclusions: The research presented here represent the first detailed examination of the reproductive ecology of giant sequoia, which will provide necessary background information for the conservation of genetic resources in this species. We suggest that restoration planting can mitigate potential diversity loss from many giant sequoia populations.


Botany ◽  
2014 ◽  
Vol 92 (11) ◽  
pp. 795-803 ◽  
Author(s):  
Michiko Inanaga ◽  
Atsushi Nakanishi ◽  
Takeshi Torimaru ◽  
Naoyuki Nishimura ◽  
Nobuhiro Tomaru

In plant populations, limited seed dispersal may generate the aggregation of related individuals, which is referred to as spatial genetic structure (SGS). If short-distance pollination frequently occurs in populations with SGS, it may lead to frequent mating between related individuals (biparental inbreeding). In this study, we examined patterns of pollen dispersal and inbreeding under such conditions in a population of the wind-pollinated tree species Fagus crenata Blume using microsatellite analyses of adult trees and dispersed seeds. The population showed weak but significant SGS and the pollen dispersal in the population involved a combination of distance-dependent (largely short-range) dispersion at the local scale and long-distance transport. Although SGS and distance-dependent pollination co-occurred, individual inbreeding coefficients for both adults and seeds were almost zero, suggesting that mating generating sound seeds was genetically random with little or no inbreeding, probably because of the weak SGS, long-distance pollen dispersal, and postpollination mechanisms including self-incompatibility and inbreeding depression. The production of sound seeds through genetically random mating may be important for maintaining F. crenata populations because the resulting seedlings may be less affected by inbreeding depression than those resulting from the mating of related individuals.


2010 ◽  
Vol 7 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Fabrice Sagnard ◽  
Sylvie Oddou-Muratorio ◽  
Christian Pichot ◽  
Giovanni G. Vendramin ◽  
Bruno Fady

2020 ◽  
Vol 93 (5) ◽  
pp. 652-661 ◽  
Author(s):  
Georgina Sola ◽  
Verónica El Mujtar ◽  
Leonardo Gallo ◽  
Giovanni G Vendramin ◽  
Paula Marchelli

Abstract Understanding the impact of management on the dispersal potential of forest tree species is pivotal in the context of global change, given the implications of gene flow on species evolution. We aimed to determine the effect of logging on gene flow distances in two Nothofagus species from temperate Patagonian forests having high ecological relevance and wood quality. Therefore, a total of 778 individuals (mature trees and saplings) of Nothofagus alpina and N. obliqua, from a single plot managed 20 years ago (2.85 hectares), were mapped and genotyped at polymorphic nuclear microsatellite loci. Historical estimates of gene dispersal distance (based on fine-scale spatial genetic structure) and contemporary estimates of seed and pollen dispersal (based on spatially explicit mating models) were obtained. The results indicated restricted gene flow (gene distance ≤ 45 m, both pollen and seed), no selfing and significant seed and pollen immigration from trees located outside the studied plot but in the close surrounding area. The size of trees (diameter at breast height and height) was significantly associated with female and/or male fertility. The significant fine-scale spatial genetic structure was consistent with the restricted seed and pollen dispersal. Moreover, both estimates of gene dispersal (historical and contemporary) gave congruent results. This suggests that the recent history of logging within the study area has not significantly influenced on patterns of gene flow, which can be explained by the silviculture applied to the stand. The residual tree density maintained species composition, and the homogeneous spatial distribution of trees allowed the maintenance of gene dispersal. The short dispersal distance estimated for these two species has several implications both for understanding the evolution of the species and for defining management, conservation and restoration actions. Future replication of this study in other Nothofagus Patagonian forests would be helpful to validate our conclusions.


2017 ◽  
Vol 114 (48) ◽  
pp. 12761-12766 ◽  
Author(s):  
Antonio R. Castilla ◽  
Nathaniel S. Pope ◽  
Megan O’Connell ◽  
María F. Rodriguez ◽  
Laurel Treviño ◽  
...  

Animal pollination mediates both reproduction and gene flow for the majority of plant species across the globe. However, past functional studies have focused largely on seed production; although useful, this focus on seed set does not provide information regarding species-specific contributions to pollen-mediated gene flow. Here we quantify pollen dispersal for individual pollinator species across more than 690 ha of tropical forest. Specifically, we examine visitation, seed production, and pollen-dispersal ability for the entire pollinator community of a common tropical tree using a series of individual-based pollinator-exclusion experiments followed by molecular-based fractional paternity analyses. We investigate the effects of pollinator body size, plant size (as a proxy of floral display), local plant density, and local plant kinship on seed production and pollen-dispersal distance. Our results show that while large-bodied pollinators set more seeds per visit, small-bodied bees visited flowers more frequently and were responsible for more than 49% of all long-distance (beyond 1 km) pollen-dispersal events. Thus, despite their size, small-bodied bees play a critical role in facilitating long-distance pollen-mediated gene flow. We also found that both plant size and local plant kinship negatively impact pollen dispersal and seed production. By incorporating genetic and trait-based data into the quantification of pollination services, we highlight the diversity in ecological function mediated by pollinators, the influential role that plant and population attributes play in driving service provision, and the unexpected importance of small-bodied pollinators in the recruitment of plant genetic diversity.


2002 ◽  
Vol 79 (3) ◽  
pp. 219-226 ◽  
Author(s):  
GUDRUN P. WELLS ◽  
ANDREW G. YOUNG

Rutidosis leptorrynchoides is a perennial forb endemic to grasslands and grassy woodlands in southeastern Australia. Studies of seed dispersal, spatial genetic structure and clonality were carried out in four populations around the Canberra region that varied in levels of correlated paternity to examine: (1) whether R. leptorrhynchoides populations exhibit fine-scale spatial genetic structure and whether this varies between populations as a function of correlated paternity; (2) whether there is a correlation between seed dispersal distance and genetic relatedness within populations; and (3) whether clonal reproduction occurs in this species and to what degree this could account for the observed spatial genetic structure. The results show that there is variation in the magnitude and extent of spatial genetic structure between R. leptorrhynchoides populations. The three larger populations, with low to moderate full-sib proportions, showed significant patterns of coancestry between plants over scales of up to one metre, whereas the smallest population, with a high full-sib proportion, had erratically high but non-significant coancestry values. The observed patterns of genetic clumping could be explained by a combination of limited seed dispersal and correlated mating owing to limited mate availability resulting from the species' sporophytic self-incompatibility system. Clonality does not appear to be an important factor contributing to genetic structure in this species.


Sign in / Sign up

Export Citation Format

Share Document