scholarly journals Unilateral application of an external pneumatic compression therapy improves skin blood flow and vascular reactivity bilaterally

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4878 ◽  
Author(s):  
Jeffrey S. Martin ◽  
Allison M. Martin ◽  
Petey W. Mumford ◽  
Lorena P. Salom ◽  
Angelique N. Moore ◽  
...  

Background We sought to determine the effects of unilateral lower-limb external pneumatic compression (EPC) on bilateral lower-limb vascular reactivity and skin blood flow. Methods Thirty-two participants completed this two-aim study. In AIM1 (n = 18, age: 25.5 ± 4.7 years; BMI: 25.6 ± 3.5 kg/m2), bilateral femoral artery blood flow and reactivity (flow mediated dilation [FMD]) measurements were performed via ultrasonography at baseline (PRE) and immediately following 30-min of unilateral EPC treatment (POST). AIM2 (n = 14, age: 25.9 ± 4.5; BMI: 27.2 ± 2.7 kg/m2) involved 30-min unilateral EPC (n = 7) or sham (n = 7) treatment with thermographic bilateral lower-limb mean skin temperature (MST) measurements at baseline, 15-min of treatment (T15) and 0, 30 and 60-min (R0, R30, R60) following treatment. Results Comparative data herein are presented as mean ± 95% confidence interval. AIM1: No significant effects on total reactive hyperemia blood flow were observed for the treated (i.e., compressed) or untreated (i.e., non-compressed) leg. A significant effect of time, but no time*leg interaction, was observed for relative FMD indicating higher reactivity bilaterally with unilateral EPC treatment (FMD: +0.41 ± 0.09% across both legs; p < 0.05). AIM2: Unilateral EPC treatment was associated with significant increases in whole-leg MST from baseline during (T15: +0.63 ± 0.56 °C in the visible untreated/contralateral leg, p < 0.025) and immediately following treatment (i.e., R0) in both treated (+1.53 ± 0.59 °C) and untreated (+0.60 ± 0.45 °C) legs (p < 0.0125). Across both legs, MST remained elevated with EPC at 30-min post-treatment (+0.60 ± 0.45 °C; p < 0.0167) but not at 60-min post (+0.27 ± 0.46 °C; p = 0.165). Sham treatment was associated with a significant increase in the treated leg immediately post-treatment (+1.12 ± 0.31 °C; p < 0.0167), but not in the untreated leg (−0.27 ± 0.12 °C). MST in neither the treated or untreated leg were increased relative to baseline at R30 or R60 (p > 0.05). Finally, during treatment and at all post-treatment time points (i.e., R0, R30 and R60), independent of treatment group (EPC vs. sham), there was a significant effect of region. The maximum increase in MST was observed at the R0 time point and was significantly (p < 0.05) larger in the thigh region (+1.02 ± 0.31 °C) than the lower-leg (+0.47 ± 0.29 °C) region. However, similar rates of MST decline from R0 in the thigh and lower leg regions were observed at the R30 and R60 time points. Discussion Unilateral EPC may be an effective intervention for increasing skin blood flow and/or peripheral conduit vascular reactivity in the contralateral limb. While EPC was effective in increasing whole-leg MST bilaterally, there appeared to be a more robust response in the thigh compared to the lower-leg. Thus, proximity along the leg may be an important consideration in prospective treatment strategies.

VASA ◽  
2012 ◽  
Vol 41 (4) ◽  
pp. 275-281 ◽  
Author(s):  
da Rocha Chehuen ◽  
G. Cucato ◽  
P. dos Anjos Souza Barbosa ◽  
A. R. Costa ◽  
M. Ritti-Dias ◽  
...  

Background: This study assessed the relationship between lower limb hemodynamics and metabolic parameters with walking tolerance in patients with intermittent claudication (IC). Patients and methods: Resting ankle-brachial index (ABI), baseline blood flow (BF), BF response to reactive hyperemia (BFRH), oxygen uptake (VO2), initial claudication distance (ICD) and total walking distance (TWD) were measured in 28 IC patients. Pearson and Spearman correlations were calculated. Results: ABI, baseline BF and BF response to RH did not correlate with ICD or TWD. VO2 at first ventilatory threshold and VO2peak were significantly and positively correlated with ICD (r = 0.41 and 0.54, respectively) and TWD (r = 0.65 and 0.71, respectively). Conclusions: VO2peak and VO2 at first ventilatory threshold, but not ABI, baseline BF and BFHR were associated with walking tolerance in IC patients. These results suggest that VO2 at first ventilatory threshold may be useful to evaluate walking tolerance and improvements in IC patients.


Author(s):  
Xiangfeng He ◽  
Xueyan Zhang ◽  
Fuyuan Liao ◽  
Li He ◽  
Xin Xu ◽  
...  

BACKGROUND: Various cupping sizes of cupping therapy have been used in managing musculoskeletal conditions; however, the effect of cupping sizes on skin blood flow (SBF) responses is largely unknown. OBJECTIVE: The objective of this study was to compare the effect of three cupping sizes of cupping therapy on SBF responses. METHODS: Laser Doppler flowmetry (LDF) was used to measure SBF on the triceps in 12 healthy participants in this repeated measures study. Three cup sizes (35, 40 and 45 mm in diameter) were blinded to the participants and were tested at -300 mmHg for 5 minutes. Reactive hyperemic response to cupping therapy was expressed as a ratio of baseline SBF. RESULTS: All three sizes of cupping cups resulted in a significant increase in peak SBF (p< 0.001). Peak SBF of the 45 mm cup (9.41 ± 1.32 times) was significantly higher than the 35 mm cup (5.62 ± 1.42 times, p< 0.05). Total SBF of the 45 mm cup ((24.33 ± 8.72) × 103 times) was significantly higher than the 35 mm cup ((8.05 ± 1.63) × 103 times, p< 0.05). Recovery time of the 45 mm cup (287.46 ± 39.54 seconds) was significantly longer than the 35 mm cup (180.12 ± 1.42 seconds, p< 0.05). CONCLUSIONS: Our results show that all three cup sizes can significantly increase SBF. The 45 mm cup is more effective in increasing SBF compared to the 35 mm cup.


1977 ◽  
Vol 233 (4) ◽  
pp. H500-H504
Author(s):  
J. K. Vyden ◽  
T. Takano ◽  
K. Nagasawa ◽  
T. Ogawa ◽  
M. Groseth-Robertson ◽  
...  

The 10-min reactive hyperemia reaction was studied in a group of normal males, 10 normal females, 10 females in each trimester of pregnancy, and 10 females 6 wk postpartum. Sex difference had a marked effect on the hyperemic reaction, in that 5 and 15 s after release of circulatory arrest, the mean forearm blood flow in normal males was significantly reduced below that of normal females. During pregnancy there was a shift in the reaction of the pregnant female toward that in the normal male. In the 1st trimester of pregnancy, 5 s after circulatory arrest the mean forearm blood flow was diminished below that of the normal female; in the 2nd and 3rd trimesters at 5 s, the reaction was significantly diminished below that of the normal female. At 6wk postpartum, the reaction was essentially the same as in the nonpregnant female. Although these changes may be explained by a hormonal difference, they portray that there may be a marked difference in vascular reactivity due to sex difference only.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Mohammad W. Akhtar ◽  
Stanley J. Kleis ◽  
Ralph W. Metcalfe ◽  
Morteza Naghavi

Both structural and functional evaluations of the endothelium exist in order to diagnose cardiovascular disease (CVD) in its asymptomatic stages. Vascular reactivity, a functional evaluation of the endothelium in response to factors such as occlusion, cold, and stress, in addition to plasma markers, is the most widely accepted test and has been found to be a better predictor of the health of the endothelium than structural assessment tools such as coronary calcium scores or carotid intima-media thickness. Among the vascular reactivity assessment techniques available, digital thermal monitoring (DTM) is a noninvasive technique that measures the recovery of fingertip temperature after 2–5 min of brachial occlusion. On release of occlusion, the finger temperature responds to the amount of blood flow rate overshoot referred to as reactive hyperemia (RH), which has been shown to correlate with vascular health. Recent clinical trials have confirmed the potential importance of DTM as an early stage predictor of CVD. Numerical simulations of a finger were carried out to establish the relationship between DTM and RH. The model finger consisted of essential components including bone, tissue, major blood vessels (macrovasculature), skin, and microvasculature. The macrovasculature was represented by a pair of arteries and veins, while the microvasculature was represented by a porous medium. The time-dependent Navier–Stokes and energy equations were numerically solved to describe the temperature distribution in and around the finger. The blood flow waveform postocclusion, an input to the numerical model, was modeled as an instantaneous overshoot in flow rate (RH) followed by an exponential decay back to baseline flow rate. Simulation results were similar to clinically measured fingertip temperature profiles in terms of basic shape, temperature variations, and time delays at time scales associated with both heat conduction and blood perfusion. The DTM parameters currently in clinical use were evaluated and their sensitivity to RH was established. Among the parameters presented, temperature rebound (TR) was shown to have the best correlation with the level of RH with good sensitivity for the range of flow rates studied. It was shown that both TR and the equilibrium start temperature (representing the baseline flow rate) are necessary to identify the amount of RH and, thus, to establish criteria for predicting the state of specific patient’s cardiovascular health.


Author(s):  
Xiaotong Zhu ◽  
Fu-Lien Wu ◽  
Ting Zhu ◽  
Fuyuan Liao ◽  
Yuanchun Ren ◽  
...  

Weight-bearing exercise such as walking may increase risk of foot ulcers in people with diabetes mellitus (DM) because of plantar ischemia due to repetitive, high plantar pressure. Applications of local vibrations on plantar tissues as a preconditioning intervention before walking may reduce plantar tissue ischemia during walking. The objective of this study was to explore whether preconditioning local vibrations reduce reactive hyperemia after walking. A double-blind, repeated-measures, and crossover design was tested in 10 healthy participants without DM. The protocol included 10-minute baseline, 10-minute local vibrations (100 Hz or sham), 10-minute walking, and 10-minute recovery periods. The order of local vibrations was randomly assigned. Skin blood flow (SBF) was measured over the first metatarsal head during baseline and recovery periods. SBF responses were characterized as peak SBF, total SBF, and recovery time of reactive hyperemia. SBF was expressed as a ratio of recovery to baseline SBF to quantify the changes. Peak SBF in the vibration protocol (6.98 ± 0.87) was significantly lower than the sham control (9.26 ± 1.34, P < .01). Total SBF in the vibration protocol ([33.32 ± 7.98] × 103) was significantly lower than the sham control ([48.09 ± 8.9] × 103, P < .05). The recovery time in the vibration protocol (166.08 ± 32.71 seconds) was not significantly different from the sham control (223.53 ± 38.85 seconds, P = .1). Local vibrations at 100 Hz could reduce walking-induced hyperemic response on the first metatarsal head. Our finding indicates that preconditioning local vibrations could be a potential preventive intervention for people at risk for foot ulcers.


Sign in / Sign up

Export Citation Format

Share Document