scholarly journals Effect of temperature on pollen germination for several Rosaceae species: influence of freezing conservation time on germination patterns

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8195 ◽  
Author(s):  
Roberto Beltrán ◽  
Aina Valls ◽  
Nuria Cebrián ◽  
Carlos Zornoza ◽  
Francisco García Breijo ◽  
...  

Between February 2018 and April 2018, flowers were collected from eight Rosaceae species. Flowers were kept in a freezer at −20 °C for three freezing times (Treatment 1, two months; Treatment 2, four months; Treatment 3, six months). After extracting pollen, in vitro germination was induced in a culture medium and incubated at six different temperatures for 72 h. The percentage of pollen germination, average pollen tube length and maximum pollen tube length were measured. Pollen germination was maximum for all species between 15 °C and 30 °C. Cydonia oblonga, Malus sylvestris, Prunus avium, Prunus domestica, Prunus dulcis, Prunus persica and Pyrus communis obtained 30–52% pollen germination between 15 °C and 20 °C. Prunus cerasifera had 40% pollen germination at 30 °C. All species studied reached the maximum pollen tube length between 10 °C and 25 °C. Germination did not change significantly for any of the species with freezing time, but we found significant differences in the three parameters measured between treatments. The highest germination percentages were obtained in Treatment 2 (four months frozen at −20 °C), while the maximum pollen tube length was reached in Treatment 1 (two months frozen at −20 °C). According to our results, freezing time affected the germination-temperature patterns. This could indicate that studies on the effect of temperature on pollen germination should always be carried out with fresh pollen to obtain more conclusive data.

2016 ◽  
Vol 61 (4) ◽  
pp. 333-341 ◽  
Author(s):  
Aleksandar Radovic ◽  
Dragan Nikolic ◽  
Dragan Milatovic ◽  
Dejan Djurovic

The effect of three different temperatures (8, 16 and 24?C) on pollen germination and length of pollen tube in vitro was investigated in four pear cultivars (?Butirra Precoce Morettini?, ?Williams?, ?Conference? and ?Abate Fetel?). The temperature showed a significant effect on in vitro pollen germination. The highest pollen germination was determined at a temperature of 24?C (53.25%), somewhat lower at 16?C (44.72%) and the lowest at 8?C (23.16%). The temperature effect was significantly more pronounced on the length of pollen tube. Pollen tube length was about three times higher at the temperatures of 16 and 24?C compared to 8?C. The temperature of 8?C was not sufficient for pollen germination and pollen tube growth in pear cultivars. However, temperatures of 16 and 24?C were optimal for pollen germination and pollen tube growth.


Genetika ◽  
2017 ◽  
Vol 49 (3) ◽  
pp. 791-800
Author(s):  
Milica Fotiric-Aksic ◽  
Radosav Cerovic ◽  
Vera Rakonjac ◽  
Ivana Bakic ◽  
Slavica Colic ◽  
...  

Vitality of pollen, in vitro pollen germination and pollen tube growth (pollen tube length and pollen tube growth rate) were investigated in Oblacinska sour cherry in order to determine the differences between clones which have divergent yielding potential. For this purpose two ?Oblacinska? sour cherry clones with high fruit set and high yields (II/2, III/9) and two with low fruit set and low-yielding (XI/3 and XIII/1) were used in this study. Pollen germination was done on artificial medium containing 14% sucrose and 0.3% agar-agar at room temperature (23?C). Pollen tube growth was stopped with a drop of 40% formaldehyde, 1, 3, 6, 12 and 24 h after contact with the medium. The maximum percentage of germination ranged from 13.01% (clone II/2, after 1 h) to 54.19% (clone III/9, after 24 h). Pollen tube length varied from 64.84 ?m (clone XIII/1, after 1 h) to >1,100 ?m (clones II/2 and III/9, after 24 h). Pollen growth rate was quite high (up to 1.71 ?m min-1) after 6 h of germination, but rather decreasing until 24 h of germination (0.56-0.83 ?m min-1). The dynamics of in vitro pollen tubes growth among the clones were quite different, especially after 12 h and 24 h of germination. Clones that are singled out as fruitful (II/2 and III/9) gave much better results regarding pollen germination and pollen tube growth in comparison to clones which were characterized by low fruit set and yields (XI/3 and XIII/1).


Biologia ◽  
2006 ◽  
Vol 61 (1) ◽  
Author(s):  
Dario Kremer ◽  
Tomislav Jemrić

AbstractWith regard to adaptation of green ash (Fraxinus pennsylvanica Marshall) to ecological conditions in Croatia, pollen germination and pollen tube length after 2, 4 and 6 hours were examined in vitro at 10, 15, 20 and 25°C during two years 2001 and 2002. Narrow leaved ash (F. angustifolia Vahl) pollen served as a control in 2002. The year, time and temperature, and the interaction between time and temperature were significant for both germination percentage and pollen tube length. Interactions year × temperature and year × time were significant for pollen tube length only. The highest germination percentage (17.86% in 2001 and 19.40% in 2002) of green ash pollen was at 15°C after 6 hours. The pollen tube length was greatest at 20°C (393.46 µm) in 2001 and 25°C (899.50 µm) in 2002 after 6 hours. Narrow leaved ash pollen had the highest germination percentage (19.22%) at 20°C after 6 hours and was significantly reduced at 25°C. The pollen tube length was greatest at 25°C (518.90 µm) after 6 hours. It can be concluded that green ash pollen has satisfactory germination in ecological conditions in Croatia and that the optimum temperature for pollen germination is higher than 20°C.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 584c-584
Author(s):  
P. J. Kaltsikes ◽  
P. J. Bebeli

The genetics of the ability of tomato pollen to germinate and grow in vitro under low temperature was investigated in two crosses namely “Resista” × “Hilda” and “Resista” × “Monita”. In each cross the following generations were utilised: F1, F2, BC1 and BC2, and their reciprocals, along with the parents. Pollen was placed on microscope slides having cavities filled with a liquid nutrient medium (water, 10% sucrose and 50 ppm boric acid) and allowed to germinate and grow for six hours at 15° C and then killed with acetocarmine. Germination rates and pollen tube length were determined and analyses on a genetic model allowing only for additive and dominance gene effects. For pollen germination rate both additive and dominance gene effects were significant while for tube length only the additive effects were. Dominance was towards lower rates of germination. At least three genes control pollen germination rates while seven or more are involved in pollen tube length determination.


2000 ◽  
Vol 3 (9) ◽  
pp. 1372-1374
Author(s):  
Mohammed Jurial Baloch . ◽  
Abdul Rahim Lakho . ◽  
Hidayatullah Bhutto . ◽  
Mohammad Hussain Arain .

1990 ◽  
Vol 38 (4) ◽  
pp. 383 ◽  
Author(s):  
PL Gore ◽  
BM Potts ◽  
PW Volker ◽  
J Megalos

The growth of E. globulus and E. nitens pollen tubes in styles of E. globulus was examined in order to elucidate the site of the unilateral barrier to hybridisation. Pollen tubes of E. nitens failed to grow the full length of the larger E. globulus style. E. globulus pollen tubes grew an average of 1.4 mm per day for the first 4 days, compared with 0.8 mm per day for pollen tubes of E. nitens. From days 4 to 14, the growth of E. nitens pollen tubes slowed to an average of 0.2 mm per day and virtually no growth occurred after day 14. In contrast, E. globulus pollen tubes grew through the style and into the ovary between days 5 and 14. By day 28, at about the time of style abscission, E. nitens tubes had grown only 6 mm, well short of the full length of the E. globulus style (9-10 mm). A similar difference in growth was obtained in vitro where E. nitens pollen tubes were significantly shorter than those of E. globulus. A comparison also including E. ovata, E. urnigera and E. gunnii indicated a significant correlation between style length and in vitro pollen tube length. It is argued that the unilateral cross-incompatibility between E. globulus and E. nitens is due to a structural barrier arising from an inherent limit to pollen tube growth which is associated with pistil size.


2017 ◽  
Vol 54 (5) ◽  
pp. 731-743 ◽  
Author(s):  
C. S. RANASINGHE ◽  
M. D. P. KUMARATHUNGE ◽  
K. G. S. KIRIWANDENIYA

SUMMARYSuccessful fruit set in coconut depends on several reproductive processes including pollen germination and pollen tube growth. High temperature (˃33 °C) during flowering reduces fruit set in coconut. Therefore, identification and development of coconut varieties or hybrids with high reproductive heat tolerance will benefit the coconut industry in view of the climate changes. This experiment was conducted to quantify the response of pollen germination and pollen tube growth of seven coconut hybrids to increasing temperature from 16 to 38 °C. A Principal Component Analysis (PCA) was carried out to classify coconut hybrids on the basis of their temperature tolerances to pollen germination. Pollen germination and pollen tube length of the hybrids ranged from 56 to 78% and 242 to 772 µm, respectively. A modified bilinear model best described the response to temperature of pollen germination and pollen tube length. Cardinal temperatures (Tmin, Topt and Tmax) of pollen germination and pollen tube length varied among the seven hybrids. PCA identified Tmax for pollen germination and Topt for pollen tube length as the most important parameters in describing varietal tolerance to high temperature. PCA also identified SLGD × Sri Lanka Tall and Sri Lanka Brown Dwarf × Sri Lanka Tall as the most tolerant hybrids to high temperature stress and Sri Lanka Tall × Sri Lanka Tall and Sri Lanka Green Dwarf × San Ramon as less tolerant ones based on cardinal temperatures for pollen germination and pollen tube length. Tmax for pollen germination of the most tolerant and less tolerant hybrids were 41.9 and 39.5 °C, respectively. Topt for pollen tube length in the most tolerant and less tolerant hybrids were 29.5 and 26.0 °C, respectively.


2016 ◽  
Vol 64 (4) ◽  
pp. 302 ◽  
Author(s):  
Dolja Pavlova

In this work we studied and compared the toxic effect of nickel (Ni) on pollen germination and pollen tube length in Arabis alpina L. collected from serpentine and non-serpentine populations distributed in the Rila mountains, Bulgaria. Pollen grains were treated with prepared standard solutions of 100, 300, 500, and 700 μM Ni as NiCl2 in distilled water. A nutritional medium was also used to assess pollen germination. Nickel inhibited pollen germination and pollen tube elongation in both serpentine and non-serpentine plants. The percentage of germinated pollen in serpentine plants treated with Ni was higher than in non-serpentine plants but there was no difference in pollen tube elongation between groups. However, pollen tubes showed abnormalities such as coiling and swelling of the tip, or burst, and varied considerably among the samples. A complete break of pollen tube elongation is due to such abnormalities. Also, decreased pollen fertility in both populations was found. The plants from serpentines were less sensitive to (i.e. more tolerant of) elevated Ni concentrations commonly found in serpentine soils.


Sign in / Sign up

Export Citation Format

Share Document