scholarly journals Maternal high-fat diet regulates glucose metabolism and pancreatic β cell phenotype in mouse offspring at weaning

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9407
Author(s):  
Jia Zheng ◽  
Ling Zhang ◽  
Ziwei Wang ◽  
Junqing Zhang

Background Maternal malnutrition is a critical factor in determining the risk of obesity and glucose intolerance in offspring. However, little is known about the effects of a maternal high-fat diet (HFD) on the β cell phenotype in offspring, which is a major factor in glucose homeostasis, especially during the early life of offspring. Methods Dams were randomly fed a HFD (60% kcal from fat) or a chow diet before pregnancy and during gestation and lactation. Glucose metabolism and the β cell phenotype were assessed in male offspring at weaning. Results Dams fed a HFD showed impaired glucose tolerance. A HFD predisposed the offspring to increased impairment of metabolic health, including obesity, glucose intolerance and insulin resistance, compared with offspring from chow diet-fed dams. Furthermore, increased islet sizes and islet densities were observed in male offspring from HFD-fed dams at weaning. There were increases in the insulin-positive area, β cell mass and β cell proliferation in male offspring from HFD-fed dams at weaning age. Next, we further determined whether a maternal HFD could affect β cell apoptosis in mouse offspring and found that there was no significant change in β cell apoptosis between the HFD and control groups. Conclusion Our study is novel in showing that a maternal HFD predisposes offspring to impaired glucose metabolism and has a profound effect on β cell mass and proliferation in offspring mice, which is observed in mice as early as at weaning age. However, further study to clarify the underlying mechanisms is warranted.

2015 ◽  
Vol 308 (7) ◽  
pp. E573-E582 ◽  
Author(s):  
Rockann E. Mosser ◽  
Matthew F. Maulis ◽  
Valentine S. Moullé ◽  
Jennifer C. Dunn ◽  
Bethany A. Carboneau ◽  
...  

Both short- (1 wk) and long-term (2–12 mo) high-fat diet (HFD) studies reveal enhanced β-cell mass due to increased β-cell proliferation. β-Cell proliferation following HFD has been postulated to occur in response to insulin resistance; however, whether HFD can induce β-cell proliferation independent of insulin resistance has been controversial. To examine the kinetics of HFD-induced β-cell proliferation and its correlation with insulin resistance, we placed 8-wk-old male C57Bl/6J mice on HFD for different lengths of time and assayed the following: glucose tolerance, insulin secretion in response to glucose, insulin tolerance, β-cell mass, and β-cell proliferation. We found that β-cell proliferation was significantly increased after only 3 days of HFD feeding, weeks before an increase in β-cell mass or peripheral insulin resistance was detected. These results were confirmed by hyperinsulinemic euglycemic clamps and measurements of α-hydroxybutyrate, a plasma biomarker of insulin resistance in humans. An increase in expression of key islet-proliferative genes was found in isolated islets from 1-wk HFD-fed mice compared with chow diet (CD)-fed mice. These data indicate that short-term HFD feeding enhances β-cell proliferation before insulin resistance becomes apparent.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248065
Author(s):  
Keigo Taki ◽  
Hiroshi Takagi ◽  
Tomonori Hirose ◽  
Runan Sun ◽  
Hiroshi Yaginuma ◽  
...  

Excessive sodium salt (NaCl) or fat intake is associated with a variety of increased health risks. However, whether excessive NaCl intake accompanied by a high-fat diet (HFD) affects glucose metabolism has not been elucidated. In this study, C57BL/6J male mice were fed a normal chow diet (NCD), a NCD plus high-NaCl diet (NCD plus NaCl), a HFD, or a HFD plus high-NaCl diet (HFD plus NaCl) for 30 weeks. No significant differences in body weight gain, insulin sensitivity, and glucose tolerance were observed between NCD-fed and NCD plus NaCl-fed mice. In contrast, body and liver weights were decreased, but the weight of epididymal white adipose tissue was increased in HFD plus NaCl-fed compared to HFD-fed mice. HFD plus NaCl-fed mice had lower plasma glucose levels in an insulin tolerance test, and showed higher plasma glucose and lower plasma insulin levels in an intraperitoneal glucose tolerance test compared to HFD-fed mice. The β-cell area and number of islets were decreased in HFD plus NaCl-fed compared to HFD-fed mice. Increased Ki67-positive β-cells, and increased expression levels of Ki67, CyclinB1, and CyclinD1 mRNA in islets were observed in HFD-fed but not HFD plus NaCl-fed mice when compared to NCD-fed mice. Our data suggest that excessive NaCl intake accompanied by a HFD exacerbates glucose intolerance, with impairment in insulin secretion caused by the attenuation of expansion of β-cell mass in the pancreas.


2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Xusheng Tian ◽  
Yukun Zhang ◽  
Han Li ◽  
Yunfeng Li ◽  
Ning Wang ◽  
...  

Abstract Background The impaired glucose tolerance (IGT) is a representative prediabetes characterized by defective glucose homeostasis, and palmatine (PAL) is a natural isoquinoline alkaloid with multiple pharmacological effects. Our study aims to investigate the therapeutic effect of PAL on the impaired glucose tolerance. Methods Male Sprague–Dawley rats were used to establish an IGT model with high fat diet (HFD). Oral glucose tolerance test (OGTT) and further biochemical analysis were conducted to determine the effect of PAL on glucose intolerance in vivo. Molecular details were clarified in a cellular model of IGT induced by Palmitate (PA) on INS-1 cells. Results Our study demonstrated a relief of IGT with improved insulin resistance in HFD induced rats after PAL treatment. Besides, promoted pancreas islets function was validated with significantly increased β cell mass after the treatment of PAL. We further found out that PAL could alleviate the β cell apoptosis that accounts for β cell mass loss in IGT model. Moreover, MAPK signaling was investigated in vivo and vitro with the discovery that PAL regulated the MAPK signaling by restricting the ERK and JNK cascades. The insulin secretion assay indicated that PAL significantly promoted the defective insulin secretion in PA-induced INS-1 cells via JNK rather than ERK signaling. Furthermore, PAL treatment was determined to significantly suppress β cell apoptosis in PA-induced cells. We thus thought that PAL promoted the PA-induced impaired insulin release by inhibiting the β cell apoptosis and JNK signaling in vitro. Conclusion In summary, PAL ameliorates HFD-induced IGT with novel mechanisms.


2013 ◽  
Vol 7 (3) ◽  
pp. 244
Author(s):  
Kavin Arasi ◽  
Rockann Mosser ◽  
Maureen Gannon

2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Yan-Hong Huang ◽  
Ting-Ting Ye ◽  
Chong-Xiao Liu ◽  
Lei Wang ◽  
Yuan-Wen Chen ◽  
...  

Development ◽  
2021 ◽  
Author(s):  
Molly K. Altman ◽  
Charles M. Schaub ◽  
Matthew T. Dickerson ◽  
Karolina E. Zaborska ◽  
Prasanna K. Dadi ◽  
...  

The melastatin subfamily of the transient receptor potential channels (TRPM) are regulators of pancreatic β-cell function. TRPM7 is the most abundant islet TRPM channel; however, the role of TRPM7 in β-cell function has not been determined. Here, we utilized various spatiotemporal transgenic mouse models to investigate how TRPM7 knockout influences pancreatic endocrine development, proliferation, and function. Ablation of TRPM7 within pancreatic progenitors reduced pancreatic size, α-cell and β-cell mass. This resulted in modestly impaired glucose tolerance. However, TRPM7 ablation following endocrine specification or in adult mice did not impact endocrine expansion or glucose tolerance. As TRPM7 regulates cell proliferation, we assessed how TRPM7 influences β-cell hyperplasia under insulin resistant conditions. β-cell proliferation induced by high-fat diet was significantly decreased in TRPM7-deficient β-cells. The endocrine roles of TRPM7 may be influenced by cation flux through the channel, and indeed we find that TRPM7 ablation alters β-cell Mg2+ and reduces the magnitude of elevation in β-cell Mg2+ during proliferation. Together, these findings reveal that TRPM7 controls pancreatic development and β-cell proliferation, which is likely due to regulation of Mg2+ homeostasis.


2007 ◽  
Vol 103 (5) ◽  
pp. 1764-1771 ◽  
Author(s):  
Sunmin Park ◽  
Sang Mee Hong ◽  
Ji Eun Lee ◽  
So Ra Sung

In this study, we investigated the effects of a high-fat diet and exercise on pancreatic β-cell function and mass and its molecular mechanism in 90% pancreatectomized male rats. The pancreatectomized diabetic rats were given control diets (20% energy) or a high-fat (HF) diet (45% energy) for 12 wk. Half of each group was given regular exercise on an uphill treadmill at 20 m/min for 30 min 5 days/wk. HF diet lowered first-phase insulin secretion with glucose loading, whereas exercise training reversed this decrease. However, second-phase insulin secretion did not differ among the groups. Exercise increased pancreatic β-cell mass. This resulted from stimulated β-cell proliferation and reduced apoptosis, which is associated with potentiated insulin or IGF-I signaling through insulin receptor substrate-2 (IRS2) induction. Although the HF diet resulted in decreased proliferation and accelerated apoptosis by weakened insulin and IGF-I signaling from reduction of IRS2 protein, β-cell mass was maintained in HF rats just as much as in control rats via increased individual β-cell size and neogenesis from precursor cells. Consistent with the results of β-cell proliferation, pancreas duodenal homeobox-1 expression increased in the islets of rats in the exercise groups, and it was reduced the most in rats fed the HF diet. In conclusion, exercise combined with a moderate fat diet is a good way to maximize β-cell function and mass through IRS2 induction to alleviate the diabetic condition. This study suggests that dietary fat contents and exercise modulate β-cell function and mass to overcome insulin resistance in two different pathways.


Author(s):  
Priyanka Kushwaha ◽  
Seva G. Khambadkone ◽  
Mengni Li ◽  
Ethan J. Goodman ◽  
Nandini Aravindan ◽  
...  

AbstractMaternal stressors during the prenatal and perinatal periods are associated with increased susceptibility for and severity of chronic disease phenotypes in adult offspring. In this study, we used a rat model of maternal high-fat diet (HFD) exposure during pregnancy and lactation to investigate the impact on skeletal homeostasis in offspring. In the distal femur, young male and female offspring (up to 3 weeks of age) from dams fed a HFD exhibited marked increases in trabecular bone volume relative to offspring from dams fed a chow diet, but this was followed by sustained bone loss. By 15 weeks of age, male offspring of HFD fed dams exhibited a 33% reduction in trabecular bone volume fraction that histomorphometric analyses revealed was due to a nearly threefold increase in the abundance of bone-resorbing osteoclasts, while there were no differences between female control and HFD offspring by 15 weeks of age. The osteoblastic differentiation of male offspring-derived bone marrow stromal cells was not affected by maternal diet. However, osteoclastic precursors isolated from the male offspring of HFD fed dams exhibited enhanced differentiation in vitro, forming larger osteoclasts with higher expression of the fusion marker DC-STAMP. This effect appears to be mediated by a cell autonomous increase in the sensitivity of precursors to RANKL. Taken together, these results suggest that maternal stressors like HFD exposure have persistent consequences for the skeletal health of offspring that may ultimately lead to a predisposition for osteopenia/osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document