scholarly journals Soil carbon, nitrogen and phosphorus ecological stoichiometry shifts with tree species in subalpine plantations

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9702
Author(s):  
Kaibin Qi ◽  
Xueyong Pang ◽  
Bing Yang ◽  
Weikai Bao

Understanding ecological stoichiometric characteristics of soil nutrient elements, such as carbon (C), nitrogen (N) and phosphorus (P) is crucial to guide ecological restoration of plantations in ecologically vulnerable areas, such as alpine and subalpine regions. However, there has been only a few related studies, and thus whether and how different tree species would affect soil C:N:P ecological stoichiometry remains unclear. We compared soil C:N:P ecological stoichiometry of Pinus tabulaeformis, Larix kaempferi and Cercidiphyllum japonicum to primary shrubland in a subalpine region. We observed strong tree-specific and depth-dependent effects on soil C:N:P stoichiometry in subalpine plantations. In general, the C:N, C:P and N:P of topsoil (0–10 cm) are higher than subsoil (>10 cm) layer at 0–30 cm depth profiles. The differences in C:N, N:P and C:P at the topsoil across target tree species were significantly linked to standing litter stock, tree biomass/total aboveground biomass and Margalef’s index of plant community, respectively, whereas the observed variations of C:N, N:P and C:P ratio among soil profiles are closely related to differences in soil bulk density, soil moisture, the quantity and quality of aboveground litter inputs as well as underground fine root across plantations examined. Our results highlight that soil nutrients in plantation depend on litter quantity and quality of selected tree species as well as soil physical attributes. Therefore, matching site with trees is crucial to enhance ecological functioning in degraded regions resulting from human activity.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Weida Yin ◽  
Mingfang Yin ◽  
Lin Zhao ◽  
Lin Yang

Estimation of forest carbon storage can be of great significance to the research on the productivity of terrestrial ecosystem, carbon cycle, and global warming. China has more than 54 million hm2barren hills and waste land suitable for forestation, which provides a great potential for developing carbon sink forestry by means of forestation. This research analyzed the volume increments, volume densities, and carbon contents of 15 analytical samples of five main plantation tree species in North China, includingPinus tabulaeformis(A),Robinia pseudoacacia(B),Populus euramericana(C),Larix olgenisis(D), andLarix kaempferi(E). Results showed that carbon storage dynamic process can be expressed as follows: the ages of quantitative maturity of each tree species are 67a, 40a, 30a, 48a, 49a, respectively; the average wood densities of each tree species at different age classes are 550.93 kg/m3, 629.25 kg/m3, 404.56 kg/m3, 592.33 kg/m3, and 544.11 kg/m3,t. The average carbon contents of each tree species at different age classes are 51.48%, 46.88%, 47.81%, 46.76%, and 47.24%. It showed a significant difference between the above tree species through variance test. The maximum values of average carbon storage are 70a, 40a, 30a, 48.7a, and 49.2a, respectively. The corresponding average carbon storages are A 2.527 kg, B 3,794 kg, C 2.781 kg, D 2.996 kg, and E 3,322 kg, in a descending order ofC>E>D>B>A. This research, through experiment on four tree species with clear growth rings and one tree species with unclear growth rings, verified the scientific character and the scope of application of the carbon storage dynamic analysis method, providing a new method for the measurement and analysis of forest carbon storage.



2021 ◽  
Author(s):  
Aza Leimoeva ◽  
Magomed Bazgiev ◽  
Liza Kostoyeva ◽  
Fatima Biteeva ◽  
Musa Gandarov

This paper presents a comprehensive study of the features of growth and development of coriander. The study aims to assess the effect of fertilizers, sowing time and seeding rates on the passage of phenological phases, plant height, sowing quality of seeds, leaf area and essential oil content. The paper addresses the issue of using carbon derivatives (fullerenes) as growth stimulants. The effects of fertilizers and fullerenes on plant height and laboratory seed germination are compared. The effects of the pre-sowing application of nitrogen and phosphorus fertilizers and of foliar application of double superphosphate are highlighted and described. It is shown that the change in coriander leaves is dependent on the level of plant nutrient supply. The effects of sowing time and soil nutrient levels on the seed yield are considered. The study shows which factors had a greater impact on the content of essential oil in coriander fruits and, accordingly, on its harvest. The practical experience of coriander cultivation in the conditions of the foothill zone of the Republic of Ingushetia is summarized. Keywords: coriander, fertilizer, phenological phases, fullerenes, essential oil



2021 ◽  
Author(s):  
Yage Li ◽  
Chun Han ◽  
Shan Sun ◽  
Changming Zhao

Abstract Background Long-term afforestation of different tree species strongly changes the soil physicochemical and biological properties. However, how tree species through litter quality and soil enzyme activities affect the succession of soil nutrients is still unclear in the dryland plantations. In this study, samples of surface soil (0–20 cm) and woody litter were collected from 55 years Caragana korshinskii, and 50 years Armeniaca sibirica, Populus hopeiensis, Platycladus orientalis, and Pinus tabulaeformis, and the natural grassland, and tested for the carbon, nitrogen, phosphorus, and potassium contents, as well as the soil sucrase (SC), urease (UE), and alkaline phosphorus (ALP) activities. Results We found that long-term dryland plantations increased soil total carbon (TC) by 1.69%-28.42%, but significantly decreased soil total phosphorus (TP) and total potassium (TK) by 11.87%-30.58% and 4.69%-8.25%. The C. korshinskii significantly increased soil TC, organic carbon (OC), total nitrogen (TN), available nitrogen (AN), available potassium (AK), UE, and ALP by 28.42%, 56.08%, 57.41%, 107.25%, 10.29%, 11.00%, and 107.81%, respectively, and also raised soil available phosphorus (AP) by 18.56%; while the P. orientalis significantly decreased soil TN, TP, AP, TK, AK, and UE by 38.89%, 30.58%, 76.39%, 8.25%, 8.33%, and 18.97%, respectively, and also reduced soil SC and ALP by 3.84% and 25.32%, compared to those in grassland. In addition, the C. korshinskii produced high-quality litter with lower carbon, the highest nitrogen and phosphorus, and higher potassium contents than those of P. orientalis. The litter chemical properties and soil enzyme activities together explained 62.2% of the total variation of soil nutrients, especially the litter phosphorus (LP) and soil ALP. Therefore, the tree species, LP, and soil ALP were key factors driving soil nutrient succession in dryland plantations. And the significantly positive coupling relationship between nitrogen and phosphorus in the "litter-enzyme-soil" system revealed that the improvement of nitrogen level promoted the phosphorus cycle of the ecosystem. Conclusions This study suggests choosing leguminous tree species with high-quality litter to establish plantations in the phosphorus-limited dryland, which will improve soil nutrients and alleviate nutrient limitations by adjusting soil enzyme activities.



2021 ◽  
Author(s):  
Tálisson Albiasetti ◽  
Jonas Pereira Souza Júnior ◽  
Renato Mello Prado ◽  
Joaquim José Frazão ◽  
Marisa de Cássia Piccolo

Abstract The importance of silicon (Si) in sugarcane is well known, but its effects on changing C:N:P stoichiometry enough to increase pre-sprouted seedling (PSS) and sugarcane development in the field remains unknown. To that end, the present study aimed to assess whether Si fertigation favors its absorption enough to change elemental stoichiometry (C:N:P), physiological attributes and PSS growth, as well as the growth, stem yield and juice quality of sugarcane. Two field experiments were conducted in the PSS formation stage and another in the sugarcane plant development phase. Experiment 1 was carried out in a greenhouse with PSSs under two treatments: in the absence and presence of Si (2 mmol L−1) fertigation. Experiment 2 was performed in the field in red-yellow argisol with the sugarcane plant undergoing the following treatments: absence of Si (No Si); Si supplied by fertigation during the PSS formation and sugarcane plant development phases (Si–C); and Si supplied during the PSS formation and sugarcane plant development phases (Si–M+C). The following were assessed in experiment I: growth, leaf green color index (GCI), chlorophyll fluorescence, C, N, P, and Si content, and C:Si, C:N and C:P stoichiometric ratios. In experiment II, the same stoichiometric ratios were assessed, as well as sugarcane growth, stem yield and juice quality. Si reduced the C:Si, C:N and C:P stoichiometric ratios in PSS. The C:Si ratio in the leaves and stems declined with the supply of Si, while the C:N and C:P ratio in the leaves and stem was higher in plants that received Si in the Si-M+C treatment. Applying Si fertigation in PSS formation to promote changes in C:N:P stoichiometry favored photosynthetic efficiency and growth. The Si–M+C treatment stood out, since it also caused enough C:N:P stoichiometric changes to increase sugarcane growth, yield and juice quality.



1995 ◽  
Vol 31 (12) ◽  
pp. 91-101 ◽  
Author(s):  
Y. Racault ◽  
C. Boutin ◽  
A. Seguin

In 1992, a survey was conducted on the performance of waste stabilization ponds in France. The data selected come from a sample of 178 ponds, with an average capacity of 600 p.e., throughout France. For each plant, one or several input--output load measurements over a 24-h period are available. The average organic load level received is approximately 25 kg BOD/ha.d, representing 50% of the nominal load. The quality of the treated water is presented based on the type of sewerage system feeding the ponds. The results appear dispersed, however; in 70% of the cases the concentrations in COD and BOD on filtered samples are under 120 mg/l and 40 mg/l, respectively, and the concentration in TSS under 120 mg/l (discharge standards in France for waste stabilization ponds). The reductions in nitrogen and phosphorus nutrients are on average from 60% to 70%. The influence of different parameters (sewerage system type, organic load, season, age of plant, etc.) was studied. The results appear noticeably worse when the ponds receive wastewater from a strictly separate sewerage system.



Sign in / Sign up

Export Citation Format

Share Document