scholarly journals Mayfly emergence production and body length response to hydrology in a tropical lowland stream

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9883
Author(s):  
Pablo E. Gutiérrez-Fonseca ◽  
Alonso Ramírez

Background Hydrological impacts on aquatic biota have been assessed in numerous empirical studies. Aquatic insects are severely affected by population declines and consequent diversity loss. However, many uncertainties remain regarding the effects of hydrology on insect production and the consequences of energy transfer to the terrestrial ecosystem. Likewise, sublethal effects on insect morphology remain poorly quantified in highly variable environments. Here, we characterized monthly fluctuation in benthic and emerged biomass of Ephemeroptera in a tropical lowland stream. We quantified the proportion of mayfly production that emerges into the riparian forest. We also examined the potential morphological changes in Farrodes caribbianus (the most abundant mayfly in our samples) due to environmental stress. Methods We collected mayflies (nymphs and adults) in a first-order stream in Costa Rica. We compared benthic and adult biomass from two years’ worth of samples, collected with a core sampler (0.006 m2) and a 2 m2-emergence trap. The relationship between emergence and annual secondary production (E/P) was used to estimate the Ephemeroptera production that emerged as adults. A model selection approach was used to determine the relationship between environmental variables that were collected monthly and the emergent biomass. To determine potential departures from perfect bilateral symmetry, we evaluated the symmetry of two morphological traits (forceps and forewing) of F. caribbianus adults. We used Spearman’s rank correlation coefficients (ρ) to examine potential changes in adult body length as a possible response to environmental stress. Results Benthic biomass was variable, with peaks throughout the study period. However, peaks in benthic biomass did not lead to increases in mayfly emergence, which remained stable over time. Relatively constant mayfly emergence suggests that they were aseasonal in tropical lowland streams. Our E/P estimate indicated that approximately 39% and 20% (for 2002 and 2003, respectively) of the nymph production emerged as adults. Our estimated proportion of mayfly production transferred to terrestrial ecosystems was high relative to reports from temperate regions. We observed a strong negative response of F. caribbianus body length to increased hydrology (Spearman: ρ = −0.51, p < 0.001), while slight departures from perfect symmetry were observed in all traits. Conclusion Our two years study demonstrates that there was large temporal variability in mayfly biomass that was unrelated to hydrological fluctuations, but potentially related to trophic interactions (e.g., fish predation). Body length was a good indicator of environmental stress, which could have severe associated costs for mayfly fitness in ecosystems with high temporal variation. Our results highlight the complex ecological and evolutionary dynamics of tropical aquatic insects, and the intricate connection between aquatic and terrestrial ecosystems.


2012 ◽  
Vol 279 (1739) ◽  
pp. 2793-2799 ◽  
Author(s):  
Liping Liu ◽  
Kai Puolamäki ◽  
Jussi T. Eronen ◽  
Majid M. Ataabadi ◽  
Elina Hernesniemi ◽  
...  

We have recently shown that rainfall, one of the main climatic determinants of terrestrial net primary productivity (NPP), can be robustly estimated from mean molar tooth crown height (hypsodonty) of mammalian herbivores. Here, we show that another functional trait of herbivore molar surfaces, longitudinal loph count, can be similarly used to extract reasonable estimates of rainfall but also of temperature, the other main climatic determinant of terrestrial NPP. Together, molar height and the number of longitudinal lophs explain 73 per cent of the global variation in terrestrial NPP today and resolve the main terrestrial biomes in bivariate space. We explain the functional interpretation of the relationships between dental function and climate variables in terms of long- and short-term demands. We also show how the spatially and temporally dense fossil record of terrestrial mammals can be used to investigate the relationship between biodiversity and productivity under changing climates in geological time. The placement of the fossil chronofaunas in biome space suggests that they most probably represent multiple palaeobiomes, at least some of which do not correspond directly to any biomes of today's world.



2006 ◽  
Vol 66 (1a) ◽  
pp. 85-93 ◽  
Author(s):  
M. I. Hamann

From December 1995 to November 2000, the seasonal maturation of Glypthelmins vitellinophilum Dobbin, 1958, in its definitive host, the frog Lysapsus limellus Cope, 1862, was studied in a subtropical permanent pond in northeastern Argentina. The objectives of this study were: 1) to determine the infrapopulation dynamics of the parasite, analyzing the seasonal maturation cycle throughout the years; and 2) to examine the relationship between the intensity of trematode infection in different developmental stages (recruitment, growth and maturation) and the host's body length. Of a total of 1,400 frogs examined over 60 months (5 years), 38% were found to be infected with G. vitellinophilum, and the intensity of infection was 1-15 trematodes per frog. Specimens of G. vitellinophilum were present in L. limellus throughout the years, but did not show a pronounced seasonal maturation cycle. Possible reasons for these findings are discussed with reference to climatic fluctuations and biotic factors. The infective period of the parasite (stage I) occurred in summer, autumn and spring, coinciding with the time each frog cohort appeared. These infections were found principally in small body sizes (classes 1 and 2) of L. limellus. Juvenile and nongravid specimens of worms (stage II and III) were found in frogs of different body sizes throughout the period of investigation. Gravid specimens of the parasite (stage IV) were generally recorded in autumn, winter and spring, mainly in the bodies of larger frogs. The body length of Trematodes in stages I and IV was significantly and positively correlated with that of the frogs.





Author(s):  
Andersonn Silveira Prestes

The establishment and spread of exotic species is a contemporary major concern. Alien species may become invasive in their new habitat, leading to both/either environmental and/or economic impacts. I briefly reviewed the literature in the last decade about the relationship of exotic species and native communities. I identified that professionals usually approach the subject in two main points of view: (1) researchers tend to point out the impacts of alien species on entire communities, evaluating if the relationship is positive, negative or neutral; (2) they focus on the eco-evolutionary processes involved in the introductions, the dynamics of invasion, and individual study cases. When evaluating the response of introductions to entire communities, evidence seems to be ambiguous and may support positive, negative or neutral relationship, especially depending on the scale approached. The unique eco-evolutionary pathways of each introduction may be a great shortcoming in the searching for generalities. On the other hand, advances have been made in understanding the dynamics of invasion on different lineages through a more selective/individualized approach. I suggest that the dynamics of invasion might be studied through a perspective in which different eco-evolutionary processes, levels of organization (from gene to entire communities), the history of the organism(s) and time are taken into account. Individual cases might be compared in attempt to understand how the relationship exotic and native works and in the search for generalities.



2021 ◽  
Vol 905 (1) ◽  
pp. 012002
Author(s):  
C Prayogo ◽  
C Muthahar ◽  
R M Ishaq

Abstract The cause of global warming is the increasing carbon concentration arising from industrial activities, burning of fossils, and land-use change. The purpose of this research was to find out the allometric equation to calculate the local bamboo biomass and then to be able to calculate how much carbon sequestration at bamboo riparian forest since this area was rarely being explored. The parameters observed were the height and diameter of the bamboo stem at 1.3 m height of 6 types of local bamboo using destructive sampling, along with the measurement of bamboo weight. The carbon content of the bamboo biomass, litter, and soil was measured to complement the estimation of total carbon sequestration. The results showed that the allometric equation for estimating local bamboo biomass is Y=0.6396 X1.6162 with R2=0.77, obtained from the relationship equations between dry weight and the diameter. Total carbon sequestration of this system ranged between 81 to 215 tons C ha−1.



Sign in / Sign up

Export Citation Format

Share Document